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High-fidelity computer simulations of turbulent flows are widely used in studying important applications such as 
combustion, wind power, nuclear power and fusion tokomak. These simulations produce massive amounts of data 
that need to be thoroughly analyzed.  So far, the majority of these data records are stored in data files on rotating 
disks to be analyzed after the simulations are complete.  However, a couple of recent developments have made 
such post-processing approach impractical on the expected extreme-scale computers.  First, the increase in 
computing power has far outpaced the increase in the speed of disk storage systems; therefore, we are able to 
produce data much faster than could be stored or retrieved from disks.  At the same time, the simulations have 
become more realistic, which typically produce more data than the previous generations of simulations.  An 
emerging strategy is to analyze the data to extract the desired information while the necessary data is available in 
memory, an approach generally known as in situ processing.  Next, we briefly describe two use cases involving 
turbulent flow simulations and then provide a likely scenario on the expected extreme-scale computer where more 
complete in situ processing is needed. 

One common tool to study large turbulent flow is to turn the large volume of data into movies; therefore a 
common in situ operation is to generate visualization of the turbulent flow [7].  Early implementation of such 
visualization often have hard-coded visualization algorithm in the simulation programs.  The recent development 
of tools such as ADIOS [5] allows the simulation program to be separated from the visualization  tools, which 
increase the flexibility, for example, allowing different types of visualization algorithms to be used and allowing 
different set of computing resources to be used for movie making so that the simulation software could proceed 
without waiting for the visualization operations.  This flexibility offered by these new in situ processing systems 
also makes it possible for additional operations to be performed while data is in memory [2, 6]. 

Another common use of in situ processing is to extract features from data, so that the important characteristics of 
the data are preserved while a relatively small amount of data records are stored permanently.  These features are 
typically application dependent.  For example, from an atmosphere simulation, one might extract storms; from 
ocean simulations, one might extract eddies; from a fusion plasma simulation, one might extract blobs.  This type 
of feature extract could be extreme useful for industrial uses of turbulent flow simulations, where the features to 
be extracted are much more well understood than in a typical scientific exploration where the features to be 
extracted could be ill-defined or depending on the new insight gleaned from the recent analysis of the data. 

The in situ analysis could also be used to generate auxiliary data that could speed up the common data analysis 
operations.  For example, database indexes could significantly accelerate many types of data access operations, 
however, generating such indexes could be time consuming because they require all data records to be read into 
memory in order to build an index.  Generating such an index and storing it on disk along with the original data 
will ensure the indexes are available together with data, therefore makes it more convenient to access the large 
data files [4].  In situ process could also be used to compress the data [3], compute statistics about the data, and 
derive useful byproducts. 

In short, in situ data processing is a power strategy to mitigate the ever-widening gap between the compute power 
and storage speed.  We anticipate it will be widely used in large-scale turbulent flow simulations.  As the in situ 
processing systems evolve in the next decade or so, we foresee that the in situ process will become more common, 
which effectively turn the parallel computing paradigm from the current single-program-multiple-data (SIMD) 
paradigm of parallel computing will evolve into multiple-program-multiple-data (MIMD). 

Currently, a majority of the large simulation codes are SIMD programs.  The use of in situ processing allows a 
second program to be used with the main simulation code.  In the next few years, we expect more analysis 
programs to be used with the main simulation code, which make whole parallel job into a MIMD program.  



Another reason for our prediction is that the upcoming computing hardware will be more heterogeneous.  The 
extreme scale computer is likely to be composed of a large number of CPU cores with likely even more 
accelerators; and the code to be run on the CPUs and the accelerators are likely to be different.  Therefore, a user 
program might have to have multiple components for the variety of the computing elements in the system. 

To effectively manage the multiple programs, we anticipate the in situ data processing engine to turn into 
distributed workflow management systems that will take charge of the data management and task management on 
the extreme scale computers.  This workflow management system will handle data management tasks and task 
scheduling tasks.  Among these tasks, we next describe two that might require more attention from the research 
community than the others: load balancing and code coupling. 

As simulations become more complex, one strategy to capture more physics and more fluid dynamics is to use 
adaptive meshes [1].  Because these mesh structures are dynamically generated, the amount of work could change 
dramatically if the work is statically assigned.  The work assignment will have to be dynamically adjusted.  In the 
upcoming computers, we expect the task of dynamic distributing the work to become more complex because of 
the more complex configuration of both memory system and the compute system.  The existing load balancing 
generally assume the cost of the dividing the work to be captured by the graph partitioning problem, which 
assume the cost of data movement to be the same from one processor to another.  However, in the anticipated 
exascale systems, the cost of moving one byte of data from one place to another is likely to vary dramatically 
based on the characteristics of the memory involved.  For example, the data transfer from a GPU to its host CPU 
is like to be very different from going from one CPU to another CPU, or from fast memory to slow memory.  
New methods are needed to provide load balancing on the new computer platforms. 

A MIMD program will like to have multiple components dealing with different physical processes or different 
type of domains of a simulation.  In any case, it is important for the information to be able to transfer from one 
component to another.  Current generation of the in situ processing systems primarily transfer data from the main 
simulation program to the in situ analysis procedures.  We anticipate the data movement patent to become more 
complex, with more bidirectional data flows among the various components of a MIMD program.  The coupling 
of these components clearly require rigorous mathematics to ensure correctness, however, this type of math 
support is likely to be problem dependent and provided by simulation libraries such as Chombo or BoxLib.  The 
workflow engine will be primarily be responsible for data management tasks such as moving the data among the 
sources and destinations, and cleaning up the memory after the data objects are no longer needed. 
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