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Motivation: Computational physics can be thought of as the scientific discipline that uses
the computer as a microscope. In this way, exascale simulations will allow us to peer deeper
into turbulence than ever before. In so doing, we can hope to dissect the inner workings of this
phenomenon as well as to work with turbulence when designing and exploring systems for use in
practical applications. In this whitepaper, we discuss directions for fundamental turbulence research
in hydrodynamics, thermal convection and magnetohydrodynamics (MHD), new approaches to
turbulence modeling in MHD and new developments and challenges in solution methods for MHD
and plasma physics.

Towards a Fundamental Understanding of Turbulence: Exascale simulations bring forth
the possibility of exploring the building blocks of turbulence beyond statistical theories [5]. High res-
olution simulations of a turbulent flow field may provide a glimpse at the quantization of turbulence;
the underlying universal coherent structures that govern turbulence dynamics. Exploration of these
structures to date has been limited due to computational resources. Some progress in finding these
coherent structures has been made at low Reynolds numbers in shear flows [10], Rayleigh-Bénard
convection [11, 8] and in MHD [12]. Ongoing work seeks to detect the signature of these structures
in fully turbulent flows and to assess their impact on governing the dynamics of turbulence. Assess-
ment of coherent structures in governing real-world dynamics such as those found in astrophysical
(e.g. solar and galactic processes) and geophysical (e.g. atmospheric and oceanic dynamics) sys-
tems will require significant computational power. Although enticing, exploiting these structures
for the development of numerical algorithms and turbulence models is prohibitively expensive with
current computational resources [3]. Exascale simulations may potentially offer an opportunity to
design numerical approaches to turbulence that incorporate these quanta of turbulence.

Development and Implementation of Turbulence Models: Direct numerical simulation
(DNS) of geophysical and astrophysical systems will likely remain out of reach even with exascale
simulations. On the other hand, mathematically consistent, scalable and robust large eddy simula-
tions (LES) should now be within striking distance. Since its inception, LES has been an expensive
compromise between DNS and Reynolds-averaged Navier-Stokes simulations. LES often falls back
on classical eddy viscosity closure models which may destroy the true dynamics of turbulence. Re-
cent LES models for incompressible MHD have found success on simple test problems [4, 7, 6, 9]
by being flexible enough to incorporate distinct physical mechanisms from MHD such as transfer
of energy from small to large scales. These capabilities are particularly important, for example,
in LES for magnetoconvection and geodynamo simulations. The computational solution of the
governing balance equations for mass, momentum, heat transfer and magnetic induction for such
MHD systems can be extremely challenging. These difficulties arise from both the strong nonlinear,
nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of
time- and length-scales that the interactions of these physical mechanisms produce in MHD flows.

Scalable Computational Multiphysics Solution Methods: Iterative solution algorithms
for implicit and implicit-explicit (IMEX) time integration approaches must provide robust, efficient,
and scalable solutions to the complex coupled large-scale nonlinear/linear systems generated from
a diverse set of plasma physics approximations. The most successful methods to date have been
based on strongly-coupled preconditioned Newton-Krylov type methods that employ physics-based
preconditioning techniques (e.g [1, 7, 2, 6]). These methods address numerical stiffness arising
from fast normal modes and overlapping time-scales in multiphysics PDEs by effectively building a
preconditioner from approximate block factorizations (ABF) and/or physics-based approaches that
approximate the critical off-diagonal coupling that is encoded in block-diagonal Schur complement
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operators. By design these Schur complement approximations can be effectively solved by multilevel
methods, and can result in optimal convergence rates of the coupled Newton-Krylov solver. While
progress has been made, advances in both LES and MHD solvers are required. These include:

1. Development and testing of new LES models on challenging problems such as the geodynamo
and astrophysical systems.

2. Incorporation of essential physics into LES models such as the coherent structures governing
turbulence dynamics as well as important mechanisms including transfer of energy between
scales.

3. Demonstration of large-scale MHD fluid simulations employing fully-implicit and IMEX time
integration and existing physics-based and ABF preconditioners on leadership-class machines.
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