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Aggressive national goals for reducing petroleum use by 25 percent by 2020 and greenhouse 
gas emissions by 80 percent by 2050 will require major improvements in all aspects of our 
nation’s energy use. At the same time, the U.S. transportation and energy sectors are under 
tremendous pressure from international competitors and challenging economic conditions. 
Achieving reduced fuel usage and emission goals will require significantly shortened product 
development cycles for cleaner, more efficient engine technologies. Concurrently, fuels will also 
be evolving, creating additional complexity and further underscoring the need for efficient 
product development cycles. Under the current cut-and-try approach, design cycles simply take 
too long. These challenges present a unique opportunity for U.S. leadership in supercomputing to 
develop predictive simulation tools for combustion. Simulations that reliably predict engine 
efficiency and pollutant emissions using both conventional and new fuels require higher fidelity 
modeling than is possible with current computing resources. Exascale platforms will facilitate 
model development and validation, while providing the necessary speedups in the time to 
solution and fidelity of numerical data required to make revolutionary advances in the design of 
combustion systems. 

While substantial progress has been made to understand basic principles of turbulent 
combustion through advances in experimental and computational capabilities, to-date this 
understanding is still limited due to the inherent highly nonlinear multiscale/multiphysics nature 
of the phenomena. Direct Numerical Simulation (DNS) can only be applied for moderate 
turbulence levels and small combustion volumes. Thus, some form of modeling will always be 
necessary to access device-relevant conditions and geometry, even with exascale computing. 
Recognizing the limitations for application of DNS, Large-Eddy-Simulation (LES) approaches 
have been advanced for both science and engineering and have significant potential for design. 
Specific research priorities for development of predictive models have been defined in recent 
workshops such as the SC-BES sponsored “Workshop on Clean and Efficient Combustion of 
21st Century Transportation Fuels,” and the jointly sponsored SC-BES and EERE-VT 
“Workshop to Identify Research Needs and Impacts in Predictive Simulations for Internal 
Combustion Engines.”  

One of the key objectives for LES as an approach for model-based design is to make 
predictions of complex multiphysics/multiscale processes with quantified uncertainty. The scale 
of the problems, both in terms of the size of individual jobs, and the need for running an 
ensemble of jobs over wide parameter spaces, requires exascale level computer resources along 
with corresponding algorithmic developments and demonstrations. This applies to both the 
solvers used for LES, and the UQ tools developed to quantify the accuracy of the simulations. 
The accuracy of the required simulations is complicated by the interdependence between 
different models, numerical implementation, and competition between model and numerical 
errors. Many uncertainties exist in addition to model accuracy such as error-prone numerical 
methods, poor grid quality, lack of appropriate spatial or temporal resolution, and ill-posed 
boundary or initial conditions. In addition, rare, but potentially catastrophic, events can occur. 



One such example of a catastrophic event is flame flashback in a stationary gas turbine 
combustor, which can damage the sensitive fuel injection equipment upstream. Predictive 
modeling of such occurrences requires, not only an accurate model for the response of the flame 
speed to varying mixture and flow conditions, but also adequate statistical confidence in the tail 
regions of the probability distributions. An ensemble of simulations would provide the statistical 
descriptions of these highly intermittent phenomena, along with the ability to quantify the 
associated uncertainties.  

An important aspect of performing an ensemble of simulations to explore the parameter 
space is deciding the problems that need to be simulated based on their potential to improve our 
knowledge and reduce the uncertainty. We need to make decisions on the next problem to be 
simulated that would provide the most useful information based on what was learned from the 
simulations performed till that point, while also taking into account the uncertainty associated 
with our choice of analysis parameters. The ranking and selection process needs to be automated 
if these experiments are to be carried out on batch scheduled HPC user facilities. It is necessary 
to develop an automated and optimal learning framework to rank and select the simulation 
experiments to create the most valuable ensemble of simulation dataset. Optimal learning 
techniques are being used in the design and selection of experiments in fields such as systems 
biology and drug discovery. An optimal learning strategy would start with an initial belief on the 
output characteristics of the experiments and their dependence on the parameters being studied. 
As additional experiments are performed, the results are used to update the initial beliefs. Further 
experiments are selected based on their potential to improve the precision of the beliefs and 
deliver the necessary statistical confidence in the desirable portion of the operation regime, while 
also satisfying the criteria such as covering a wide range of parameter conditions. An online 
learning methodology that can be used for ranking and selection of the next experiment is 
essential to be able to efficiently create a dataset composed of a large ensemble of simulations. 

It is also important for the selected set of simulation experiments to balance both an 
exploitative and explorative strategy. An exploitative strategy would be where a particular 
experiment is found to have a finite probability for a certain phenomena of interest. In that case, 
an exploitative strategy would be to continue to advance that experiment in time much longer or 
to perform additional experiments to obtain multiple statistical realizations at the same condition. 
An explorative strategy would try to identify a new set of input parameters that is likely to 
produce statistics at the desired conditions at a much higher rate, but will also come with the risk 
that it might place the simulation in a different regime. It is anticipated that a combination of 
exploration and exploitation would be necessary to improve the information content in an 
ensemble dataset as opposed to a single strategy. The current simulation practices are usually 
limited to a pure strategy from one of these two, unless the strategy is guided manually during 
the setup of the simulation experiments. An automated method for designing the simulations 
based on a chosen balance between these two strategies would be essential for performing 
automated ensemble simulations on exascale systems.  


