
Argonne National
Laboratory 1

Path to high-order unstructured-grid
exascale CFD
Paul Fischer
University of Illinois, CS & MechSE
Argonne National Laboratory, MCS

Katherine Heisey
Stefan Kerkemeier
James Lottes
Oana Marin
Elia Merzari
Misun Min
Aleks Obabko
Philipp Schlatter
Martin Schmitt
Ananias Tomboulides
Active users group (> 250)

Turbulence in a heat-exchanger inlet.

Argonne National
Laboratory

Argonne National

Industrial Example
!! 12 hour turnaround for result on the left:

–! 6 hours to mesh, 6 hours to run on 16K cores
!! 3 Days for result on the right (mostly meshing…)

Argonne National
Laboratory 3

Outline

n Part 1:
• Target Problems
• Where we are today

n Part 2: Strong Scaling and Exascale Algorithm/
 Architecture Considerations
• Internode latency
• n1/2 on node architectures

n Summary

Argonne National
Laboratory

Incompressible Navier-Stokes Equations

!! Key algorithmic / architectural issues:

–! Unsteady evolution implies many timesteps, significant reuse of
preconditioners, data partitioning, etc.

–! div u = 0 implies long-range global coupling at each timestep
 " iterative solvers

 communication intensive
 (comes from multiscale math – not physics directly)

–! Small dissipation " large number of scales " large number of

gridpoints for high Reynolds number Re

Argonne National
Laboratory

Navier-Stokes Time Advancement

! Nonlinear term: explicit
– k th-order backward difference formula / extrapolation (k =2 or 3)
– k th-order characteristics (Pironneau 82, MPR 90)

! Linear Stokes problem: pressure/viscous decoupling:
– 3 Helmholtz solves for velocity (easy w/ Jacobi-precond.CG)

– Poisson equation for pressure (computationally dominant)

Argonne National
Laboratory

 Some Turbulence Examples

 Film Cooling
Duggleby et al.,
TAMU

Heat Transfer: Exp. and Num.

Reynolds Number (1000-200,000)

N
us

se
lt

N
um

be
r (

5-
50

00
)

 Optimizing Heat Transfer with
Wire-Coil Inserts J. Collins, ANL

Pipe Flow:

Re! = 550

Re! = 1000
G. El Khoury, KTH

Argonne National
Laboratory

Major Difference in Jet Behavior for Minor
Design Change

MAX1

MAX2

Simulation Results:

–  Small perturbation
yields O(1) change in
jet behavior

–  Unstable jet, with low-
frequency (20 – 30 s)
oscillations

–  Visualization shows
change due to jet /
cross-flow interaction

–  MAX2 results NOT
predicted by steady
RANS (URANS ok)

Argonne National
Laboratory

!! r

8
Argonne National

Laboratory

! r

Argonne National
Laboratory

Argonne National
Laboratory

DNS of Flow around a NACA4412 Wing Profile

!! Rec = 400,000 with 5! angle of attack.
!! 3.2 billion gridpoints

Hosseini, S. M., Vinuesa, R., Schlatter, P., Hanifi, A. and Henningson, D. S.: Direct numerical simulation of the flow
around a wing section at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015,
Delft, The Netherlands.

Armin Hosseini et al. (KTH)

Argonne National
Laboratory

DNS of Flow around a NACA4412 Wing Profile

!! Formation of hairpin vortices(top),
followed by breakdown (right)

!! Flow tripped at 10% cord, similar to wind-
tunnel experiments

Armin Hosseini et al. (KTH)

Argonne National
Laboratory

DNS For I.C. Engine Analysis M. Schmitt, ETH Zurich, 2014

!! h

11
Argonne National

Laboratory

! h

Argonne National
Laboratory

 Compression: Significant Increase in Range of Scales at TDC
 – M. Schmitt, ETHZ 2014

12

Impacts thermal boundary layer, initial conditions for ignition.

Argonne National
Laboratory

A Sobering Fact: We Are Not Running Faster

Panda Thermal Stratification Benchmark
 (Obabko, Tomboulides, Aithal, Merzari, F. 2014)

!! Low density jet entering stratified background

!! Very long time integrations
–! 1 month of wall clock time
–! 2 minutes of physics
–! Desire 2 hours ! 5 years wall-clock time on 8K cores.

!! – Nek5000
–! E=190,000 elements
–! N=7
–! n ~ EN3 = 62 million
–! P = 16384 MPI ranks

•! n / P ~ 3000

!! For straight hydro, cannot further reduce n/P
–! Topic of this talk

Argonne National
Laboratory

A Computational Quandary

n We are not running faster

–  Clock speeds are fixed at ~ 1 – 4 GHz for past 10 years

–  Power concerns favor reduced clock speeds and more parallelism.

–  Communication costs limit granularity to be relatively coarse.

n What can we do?
 Time Savings Power Savings

–  High-Order 10 x 10 x
–  Scalable solvers 10 x 10 x
–  Lower communication costs 10 x 1 x
–  Lower n1/2 on accelerators (memory latency)
–  Processor-in-memory (PIMs)

Argonne National
Laboratory

Influence of Scaling on Discretization

 Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size λ) over distances L >> l. If speed ~ 1, then tfinal ~ L/ λ.

–  Dispersion errors accumulate linearly with time:

~|correct speed – numerical speed| * t (for each wavenumber)

! errort_final ~ (L / λ) * | numerical dispersion error |

–  For fixed final error εf, require: numerical dispersion error ~ (λ / L)εf, << 1.

High-order methods can efficiently deliver small dispersion errors.
 (Kreiss & Oliger 72, Gottlieb et al. 2007)

Argonne National
Laboratory

2D basis function, N=10

High-Order Spatial Discretizations
Example: Spectral element method (Patera 84, Maday & Patera 89)

– Variational method, similar to FEM, using GL quadrature.

– Domain partitioned into E high-order hexahedral elements

– Trial and test functions represented as N th-order tensor-product
polynomials within each element. (N ~ 4 -- 15, typ.)

• n ~ EN 3 gridpoints in 3D

• Fast operator evaluation: O(n) storage, O(nN) work

– Converges exponentially fast with N for smooth solutions.

Argonne National
Laboratory

Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution (Kovazsnay 48)
!! 4 orders-of-magnitude

error reduction when
doubling the resolution in
each direction

!! For a given error,
!! Reduced number of gridpoints

!! Reduced memory footprint.

!! Reduced data movement.

Argonne National
Laboratory

Excellent transport properties, even for non-smooth solutions

Convection of non-smooth data on a 32x32 grid.
(K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77)

Argonne National
Laboratory

Impact of Order on Costs

 z = D -1 r
 r = r t z
 p = z + β p
 w = A p
 σ = w t p
 x = x + α p
 r = r – α p

❑  Only one operation depends on order—the remaining, memory-bound,
depend on number of gridpoints, n.

❑  Reducing n is the most effective way to reduce data movement.

❑  To leading order, cost scales as number of gridpoints, regardless of
approximation order.

❑  Consider Jacobi PCG as an example:

Argonne National
Laboratory 9

•  For SEM, memory scales as number of gridpoints, n.
•  Work scales as nN, but is in form of (fast) matrix-matrix products.

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon

CPU time vs. #dofs, varying N. Error vs. #dofs, varying N

Cost vs. Accuracy: Electromagnetics Example
 M. Min, ANL

Argonne National
Laboratory

Nonlinear Example: NREL Channel Flow Study

n  Test case: DNS Ret = 180 (MKM’99)

n  Results: — Nek5000 & OpenFOAM have the same cost per gridpoint

Sprague et al., 2010

P: # of processors

 Performance

Q: Do the benefits in linear
problems carry over to
nonlinear cases?

Argonne National
Laboratory

Nonlinear Example: NREL Channel Flow Study

!! Accuracy: Comparison to several metrics in turbulent DNS, Re! = 180 (MKM 99)

!! 7th-order SEM needs an order-of-magnitude fewer points than 2nd-order FV.

Sprague et al., 2010

SEM

FV

ny: # of points in wall-normal direction

 Accuracy

Argonne National
Laboratory 23

Solvers

n  For incompressible Navier-Stokes, global communication via a pressure
(Poisson) solve is inescapable.
–  This is a classic example of applied mathematics being used to tackle a

problem that is intrinsically multiscale.

n  Fast robust Poisson solvers are essential.

n We use a two-step procedure:
 1.  Projection: compute best approximation p* from previous time steps

 Typically a 2-4X reduction in iteration count per step.
 Sometimes need only one iteration per step.

2.  Multigrid preconditioned CG or GMRES to solve for perturbation

 A dp = gn - A p*

Argonne National
Laboratory

Multigrid with Additive Schwarz-Based Smoothing

d

Schwarz Overlapping Smoother: Local
Poisson problems with homogeneous
Dirichlet boundary conditions.
Fast tensor-product solvers.

Coarse Grid Solve: Poisson problem
using linear finite elements on entire
spectral element mesh, A0 (GLOBAL).

(Dryja & Widlund 87, Pahl 93, Lottes & F 05)

Argonne National
Laboratory

Fast Solvers for p-Multigrid

n  Schwarz Smoothers: fast diagonalization method (Rice et al. 64, Couzy 95, F.02)

–  Exploit local tensor-product structure:

–  Complexity < A p

n  p-multigrid schedule:
 Nf = N
 N1 = 3
 N0 = 1 (coarse-grid solve)

n  Coarse-grid solve: Direct, XXT (F. & Tufo 01) – P~100,000 or less
 Custom AMG: (Lottes 08/11) – P~105…109

 Sophisticated communication kernel for AMG
 Communication intensive!

Argonne National
Laboratory

Putting At All Together: Subassembly with 217 Wire-Wrapped Pins
–! 3 million 7th-order spectral elements (n=1.01 billion)
–! 16384–131072 processors of IBM BG/P
–! 15 iterations per timestep; 1 sec/step @ P=131072
–! Coarse grid solve < 10% run time at P=131072

&=0.8 @

P=131072

Strong Scaling

7300 pts/

processor

Argonne National
Laboratory

!"#$%&'$%()*+,-.$/01.$203,45$
$

6$!$*&++&)'$7)&'89$
$

6$$:;<6=!>!??$@)(,9$
•! "$)($!$(A'B9$7,($@)(,$

!! C$-&D8E(,$)F$G;$H$-E+IJ(&K$

!! 4LM$7A(A++,+$,N@&,'@O$A8$$
 1 -&++&)'$7()@,99,9$

!! !"""#$%&'()*$+%,-))#

Number of Cores

Ti
m

e
pe

r s
te

p

Strong Scaling, 1 Million Processes

Reactor Assembly
n=2.0 billion
w / S. Parker, ALCF

4000 pts/core

2000 pts/process

Scaling to Beyond 1 Million Processes

Argonne National
Laboratory

Some Exascale Questions

n Will this scaling continue as we move to exascale?
n  Is this the best we can do?

n What, exactly, is better, or even good?

–  Good node performance
–  Strong scaling to large processor counts.

n  Strong scaling is ultimately limited by costs that do not
go to zero as n/P!0:

 t ~ c1 n/P + c2 + c3 log P

–  c2 ~ communication overhead

 ~ other overhead (memory latency on GPU)
 ~ Amdahl

–  c3 ~ can be mitigated by hardware on the NIC

Argonne National
Laboratory

Granularity
!! One often hears the argument – exascale means running bigger, not faster.

–! This is the classic weak scaling strategy, and it is fine, up to a point.

!! However, larger problems take more steps… run time is in fact longer, even
under perfect weak scaling.

!! We are interested in understanding what is setting the limits on strong scaling
applications, because that sets the limits on speed.

For time-resolved simulations, number of steps scales as O(n1/3), whether implicit or explicit.
29

Argonne National
Laboratory

Two Run-Time Scenarios

n  Fully Populated Cluster: job on every node.

30

⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,,

⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,,

⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,,

⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,,

⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,,

⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,, ⇢⇡
�⇠

h,,

⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,,

⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,, ⇢⇡
�⇠
J

h,,

n  Supercomputing Center:
–  Job not using all nodes.

n Our question:
–  Why stop at P nodes,

instead of 2P ??

n  Study model Poisson
problem to get insight.

Argonne National
Laboratory

Model Problem: Poisson with finite differences

n  Consider complexity estimates for 3D
Poisson with several iterative solvers.

n  n/P points on each processor

uij

n1/3

processor p data from neighbor
allows stencil update

Argonne National
Laboratory

Metric for Scalability
n  P-processor solution time for n points:

–  T(P,n) = TA(P,n) + TC(P,n), or nonoverlapping comm.

–  T(P,n) = max (TA(P,n) , TC(P,n)) overlapping comm.

n  Seek conditions where communication is subdominant, TA > TC :

–  TA(P,n) = T(1,n) / P the parallel work

–  TC(P,n) the total communication cost = sum tc(m)

Argonne National
Laboratory

Linear Communication Model

1991

 1996

2012

 words (64-bit)

tim
e

 (s
ec

)

Linear communication model :

 tc (m) = α* + β* m, m: 64-bit words

Nondimensionalize by ta [c = a*b] :

 tc (m) = (α + β m) ta

 α = α* / ta , β = β* / ta

Argonne National
Laboratory

25 Years of Nondimensional Machine Parameters

 YEAR ta (us) % # % # m2 MACHINE .
 1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
 1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
 1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
 1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
 1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
 1991 .100 60. .80 600 8 75 Intel Delta
 1992 .066 50. .15 758 2.3 330 Intel Paragon
 1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
 1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
 1998 .006 14. .06 2300 10 230 SGI Origin 2000
 1999 .005 20. .04 4000 8 375 Cray T3E/450
 2005 .002 4. .026 2000 13 154 BGL/ANL
 2008 .0017 4. .021 2353 12.6 185 BGP/ANL
 2011 .0007 2.5 .002 3570 3 1190 Cray Xe6 (KTH) [m2=24]
 2012 .0010 4. .005 5000 5 1000 BGQ/ANL

!! m2 := % / # ~ message size " twice cost of single-word message

!! ta based on matrix-matrix products of order 10—13

 % # m2 MACHINE .
 1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
 1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
 1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
 1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
 1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
 1991 .100 60. .80 600 8 75 Intel Delta
 1992 .066 50. .15 758 2.3 330 Intel Paragon
 1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
 1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
 1998 .006 14. .06 2300 10 230 SGI Origin 2000
 1999 .005 20. .04 4000 8 375 Cray T3E/450
 2005 .002 4. .026 2000 13 154 BGL/ANL
 2008 .0017 4. .021 2353 12.6 185 BGP/ANL
 2011 .0007 2.5 .002 3570 3 1190 Cray Xe6 (KTH) [m2=24]
 2012 .0010 4. .005 5000 5 1000 BGQ/ANL

Argonne National
Laboratory

25 Years of Nondimensional Machine Parameters

 YEAR ta (us) % # % # m2 MACHINE .
 1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
 1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
 1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
 1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
 1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
 1991 .100 60. .80 600 8 75 Intel Delta
 1992 .066 50. .15 758 2.3 330 Intel Paragon
 1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
 1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
 1998 .006 14. .06 2300 10 230 SGI Origin 2000
 1999 .005 20. .04 4000 8 375 Cray T3E/450
 2005 .002 4. .026 2000 13 154 BGL/ANL
 2008 .0017 4. .021 2353 12.6 185 BGP/ANL
 2011 .0007 2.5 .002 3570 3 1190 Cray Xe6 (KTH) [m2=24]
 2012 .0010 4. .005 5000 5 1000 BGQ/ANL

!! m2 := % / # ~ message size " twice cost of single-word message

!! ta based on matrix-matrix products of order 10—13

 % # m2 MACHINE .
 1986 50.00 5960. 64 119.2 1.3 93 Intel iPSC-1 (286)
 1987 .333 5960. 64 18060 192 93 Intel iPSC-1/VX
 1988 10.00 938. 2.8 93.8 .28 335 Intel iPSC-2 (386)
 1988 .250 938. 2.8 3752 11 335 Intel iPSC-2/VX
 1990 .100 80. 2.8 800 28 29 Intel iPSC-i860
 1991 .100 60. .80 600 8 75 Intel Delta
 1992 .066 50. .15 758 2.3 330 Intel Paragon
 1995 .020 60. .27 3000 15 200 IBM SP2 (BU96)
 1996 .016 30. .02 1800 1.25 1500 ASCI Red 333
 1998 .006 14. .06 2300 10 230 SGI Origin 2000
 1999 .005 20. .04 4000 8 375 Cray T3E/450
 2005 .002 4. .026 2000 13 154 BGL/ANL
 2008 .0017 4. .021 2353 12.6 185 BGP/ANL
 2011 .0007 2.5 .002 3570 3 1190 Cray Xe6 (KTH) [m2=24]
 2012 .0010 4. .005 5000 5 1000 BGQ/ANL

GPU

GPU

Argonne National
Laboratory

Complexity for Jacobi Iteration

Point Jacobi iteration (7-point stencil):

 — Work: TaJ ~ 14 n/P ta

 — Communication: TcJ ~ (6 + (n/P) 2/3 (1/ m2)) # ta

 — For fixed n/P, Jacobi complexity is P-independent

 — However, algorithmic scaling is poor (iteration count scales as n2/3)

 – a more communication intensive approach is required

 – conjugate gradient iteration, multigrid, etc.

 – Jacobi is nonetheless a reasonable surrogate for explicit

 timesteppers

Argonne National
Laboratory

Complexity Models for Iterative Solvers
–  Point Jacobi iteration (7-point stencil, 3D):

 — Work: TaJ ~ 14 n/P ta

 — Communication: TcJ ~ (6 + (n/P) 2/3 (1/ m2)) α ta

–  Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)

 — Work: TaCG ~ 27 n/P ta

 — Communication: TcCG ~ TcJ + 4 log2 P α ta

–  Geometric Multigrid:
 — Work: TaMG ~ 50 n/P ta

 — Communication: TcMG ~ (8 log2 n/P + 30/m2 (n/P)2/3 + 8 log2 P) α ta

Argonne National
Laboratory

Scaling Estimates: Jacobi

!!Q: How large must n/P be for Ta ~ Tc ?

!! Jacobi scaling is independent of P.
!! Of course, need occasional all_reduce to check convergence…
!! Also, not a scalable algorithm (but, similar to explicit timestepper)

BG/P parameters (BG/Q is similar)

Argonne National
Laboratory

Scaling Estimates: Conjugate Gradients (I)

!! The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.

!! On BG/L, /P, /Q, however, all_reduce is effectively P-independent.

Argonne National
Laboratory

Eliminating log P term in CG
!!On BG/L, /P, /Q, all_reduce is nearly P-independent.
!! For P=524288, all_reduce(1) is only 4# !'

all_reduce

" ping-pong

 BG/Q hardware all_reduce

all_reduce

P=16 - 524288

" ping-pong

 BG/Q software all_reduce

Message size m (64-bit words) Message size m (64-bit words)

Argonne National
Laboratory

Eliminating log P term in CG

!! On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all_reduce.

!! In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

" 10x faster run, but no reduction in power consumption.

2 x 4

Argonne National
Laboratory

Scaling Estimates: Multigrid

!! In this case, granularity is relatively high because of the 8 log2 P
term, which is associated with the coarse solve in MG.

!! Replacing 8 % log2 P with 16% yields n / P ~ 9000, which is > 2x
gain in scalability.

 Such gains could be realized through hardware support in the
 network interface card (NIC) for scan / reduce operations.

 Further savings might be possible by reducing the first term.

Argonne National
Laboratory

Measured and Modeled Multigrid Performance

Argonne National
Laboratory

Measured and Modeled Multigrid Performance

TA = TC

Argonne National
Laboratory

Scaling Estimates: Multigrid

#! Replacing 8 % log2 P with 16% yields n / P ~ 9000, which is > 2x
gain in scalability.

 Such gains could be realized through hardware support in the
 network interface card (NIC) for scan / reduce operation

#! Some vendors are already moving in this direction (yay).

#! Further savings might be possible by reducing the first term.
(Algortihmic issues addressed by Bell, Dalton, Olson, 2013.)

 This is an excellent co-design opportunity.

Argonne National
Laboratory

What About Accelerators?

46

Argonne National
Laboratory

What About Accelerators
!!A combined strong-scale / weak scale study:

– Weak scaling – horizontal lines
– Strong scaling – vertical lines

–! Weak scaling sustained to all nodes on Titan

Argonne National
Laboratory

NekCEM + OpenACC

48

!!OpenACC variant sustaing 2.5x 16-core MPI version.

Argonne National
Laboratory

Disconcerting Observation

!!The P=1 case rolls over before communication effects kick in.
!!n/P is limited to be > 125,000 to get peak performance per

node (this is for electromagnetics, CFD is higher).

Argonne National
Laboratory

GPU Performance Scaling: N=14

50

!! Strong-scale limit: n/P so small that ! " 0

! Granularity limit: one spectral element per rank

! Here, we see that the GPU hits min (n/P) because n1/2 is large $

! GPU version is still faster than CPU (and better in power by 2.5 x!)

9

(a) (b) (c)

Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 7.

(a) (b) (c)

Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

10 seconds, corresponding to E/P = 32. A corresponding
strong-scale CPU run could effectively use 32 cores, for a
run-time of ⇠8 seconds. We note, however, that 2 GPUs
would also yield ⇠8 seconds run-time, so the choice between
using 32 CPU cores or 2 GPUs would be dictated by the
question of power consumption. It is clear that running with
2 GPUs would require a factor of about (8 second/10 second)
⇥ (2 GPU / 1 GPU) = 1.6 increase in power over the single
GPU case.

In summary, the GPU performance is impressive in that
it is equivalent to somewhere between 16 and 32 CPU
cores. However, the relatively large vector lengths required
to get high performance prevent the GPU from delivering a
time to solution that dominates the multi-CPU case, which
continues to demonstrate strong scaling (and, thus, potential
for still finer granularity) for this class of problems. For this
particular point in the architecture/algorithm/implementation
space, the all-GPU and all-CPU models are nearly on par
with respect to shortest possible run-time, so that the choice
must be determined by power considerations.

Our scaling studies show good performance at large scale,
using up to 16,384 GPUs on Titan. Figure 5 shows weak
and strong scalings with GPUDirect for the data sizes of
3.3 million and up to 6.9 billions that are at the above of
the strong-scale limits so that the timings for n/P = 500 ·
153, 250 · 153, and 125 · 153 decrease with 87% and 73%
strong-scale efficiency as the numbers of GPUs are increased
by twofold and fourfold, respectively, on each strong-scale
line. The horizontal dots shows ⇠80% weak-scale efficiency

Figure 5. Timings on different number of GPUs for 1000
timestep runs with n=E(N + 1)3, varying E with N=14.

from 8 GPUs to 16,384 GPUs. Figure 6 shows timings of
GPU runs for the case of n/P = 125 · 153 from Figure 5,
in comparison to those of CPU runs, up to 16,384 nodes
(262,144 CPU cores). The computation timings on GPU for
both GPUDirect and GPUDirect-disabled cases demonstrate
2.5⇥ speedup, compared to those on CPU, shown as the solid
lines in Figure 6. We note that the total computation timings
on GPU with GPUDirect are faster only by 10%⇠15% of
those on GPU with GPUDirect disabled.

Prepared using sagej.cls

Argonne National
Laboratory

GPU Performance Scaling: N=7

51

!! Here, we have fewer points per element, so CPU version can be
driven to smaller (n/P).

! At this point, it is faster than the GPU version, which suffers from
large n1/2

!!GPU now also exhibits some communication overhead.

9

(a) (b) (c)

Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 7.

(a) (b) (c)

Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

10 seconds, corresponding to E/P = 32. A corresponding
strong-scale CPU run could effectively use 32 cores, for a
run-time of ⇠8 seconds. We note, however, that 2 GPUs
would also yield ⇠8 seconds run-time, so the choice between
using 32 CPU cores or 2 GPUs would be dictated by the
question of power consumption. It is clear that running with
2 GPUs would require a factor of about (8 second/10 second)
⇥ (2 GPU / 1 GPU) = 1.6 increase in power over the single
GPU case.

In summary, the GPU performance is impressive in that
it is equivalent to somewhere between 16 and 32 CPU
cores. However, the relatively large vector lengths required
to get high performance prevent the GPU from delivering a
time to solution that dominates the multi-CPU case, which
continues to demonstrate strong scaling (and, thus, potential
for still finer granularity) for this class of problems. For this
particular point in the architecture/algorithm/implementation
space, the all-GPU and all-CPU models are nearly on par
with respect to shortest possible run-time, so that the choice
must be determined by power considerations.

Our scaling studies show good performance at large scale,
using up to 16,384 GPUs on Titan. Figure 5 shows weak
and strong scalings with GPUDirect for the data sizes of
3.3 million and up to 6.9 billions that are at the above of
the strong-scale limits so that the timings for n/P = 500 ·
153, 250 · 153, and 125 · 153 decrease with 87% and 73%
strong-scale efficiency as the numbers of GPUs are increased
by twofold and fourfold, respectively, on each strong-scale
line. The horizontal dots shows ⇠80% weak-scale efficiency

Figure 5. Timings on different number of GPUs for 1000
timestep runs with n=E(N + 1)3, varying E with N=14.

from 8 GPUs to 16,384 GPUs. Figure 6 shows timings of
GPU runs for the case of n/P = 125 · 153 from Figure 5,
in comparison to those of CPU runs, up to 16,384 nodes
(262,144 CPU cores). The computation timings on GPU for
both GPUDirect and GPUDirect-disabled cases demonstrate
2.5⇥ speedup, compared to those on CPU, shown as the solid
lines in Figure 6. We note that the total computation timings
on GPU with GPUDirect are faster only by 10%⇠15% of
those on GPU with GPUDirect disabled.

Prepared using sagej.cls

Argonne National
Laboratory

Disconcerting Observation

!!When I pressed the vendor, I was told – exascale means
“Think Big”

!!But that’s clearly not the road to speed
– Note, if you double P and reduce time to solution by ", the power

consumption is constant.

Argonne National
Laboratory

n1/2 – an old concern important for exascale

53
Supercomputers and Their Performance in Computational Fluid Dynamics, Kozo Fujii, Springer 1993.

Argonne National
Laboratory

n1/2 Requirements for a Candidate Node to Yield Speedup

54

• Requirements on n 1
2
for a candidate node to yield speed-up:

SP = ⌘ · S1 · P (speed, in mflops)

S1 = observed saturated speed, in flops, n � 1

• Let n be total problem size (gridpoints, say), and n 1
2
be the

local problem size such that

S1(n 1
2
) =

1

2

S1(n
sat

)

• Let W := w · n be the total number of flops and

w be the number of flops per gridpoint.

• Choose P = n/n 1
2

(50% e�ciency)

• Time to solution: TP =

w · n
SP

=

w · n
⌘S1P

=

w · n
⌘S1(n/n 1

2
)

=

w · n 1
2

1
2S1

= 2w

✓
n 1

2

S1

◆

1

Argonne National
Laboratory

n1/2 Requirements for a Candidate Node to Yield Speedup

n  In addition to internode latency and S1, we need to ensure that vendors
are paying attention to n1/2.

–  They have little reason to do so for, say, clusters, workstations, etc.
but it is imperative for HPC architectures.

55

• Requirements on n 1
2
for a candidate node to yield speed-up:

SP = ⌘ · S1 · P (speed, in mflops)

S1 = observed saturated speed, in flops, n � 1

• Let n be total problem size (gridpoints, say), and n 1
2
be the

local problem size such that

S1(n 1
2
) =

1

2

S1(n
sat

)

• Let W := w · n be the total number of flops and

w be the number of flops per gridpoint.

• Choose P = n/n 1
2

(50% e�ciency)

• Time to solution: TP =

w · n
SP

=

w · n
⌘S1P

=

w · n
⌘S1(n/n 1

2
)

=

w · n 1
2

1
2S1

= 2w

✓
n 1

2

S1

◆

1

Argonne National
Laboratory

Breaking the Tyranny of Timescales
n  Some Examples:

–  Pipe flow – L, D, transition ~ D not L >> D (particularly with roughness)
• Hydro convergence on short timescale, D/U
• Heat transfer, however, is often L/U
–  One idea is to use surrogate hydro simulations as advecting

velocity field (works for “one-way” coupling).

–  Turbulence –
• Can we move to ensemble averages instead of long-time averages?

• How would we initialize (say) 50 instantiations such that:
–  Appropriately distinct
–  Avoid long wait for each initial transient to decay

 (weather community has done work in this area…)

–  More physics, etc.
56

Argonne National
Laboratory

Summary
n  Part I:

–  High-order and multilevel solvers for turbulent DNS / LES are certainly viable
ways to make performance gains.

n  Part II:
–  Reducing turn-around time in post-frequency-scaling era is challenging,

particularly under tight power budgets.

–  Strong scaling is central to HPC.
•  As a community, we need to police ourselves by presenting strong-scaling

studies, rather than weak-scale.

–  Relegating more complex tasks (e.g. parallel prefix support) to the NIC could be
of value.

–  Paying close attention to reduced n1/2 on multicore/GPU nodes might pay more
dividends than increased peak, because one then gets the multiplicative effect of
increasing P.

–  Hope on the horizon:
•  Alternative modeling approaches (ensemble averaging, etc.)
•  PIM (processor in memory) architectures:

 low computational intensity of PDE-based solvers.
•  etc. 57

Argonne National
Laboratory

Thank You!

58

