Path to high-order unstructured-grid

exascale CFD

Paul Fischer
University of lllinois, CS & MechSE
Argonne National Laboratory, MCS

Katherine Heisey
Stefan Kerkemeier
James Lottes

Oana Marin

Elia Merzari

Misun Min

Aleks Obabko

Philipp Schlatter
Martin Schmitt
Ananias Tomboulides
Active users group (> 250)

Turbulence in a heat-exchanger inlet.

Industrial Example

B 12 hour turnaround for result on the left:
— 6 hours to mesh, 6 hours to run on 16K cores
® 3 Days for result on the right (mostly meshing...)

Outline

WPart 1:
e Target Problems

* Where we are today

M Part 2: Strong Scaling and Exascale Algorithm/
Architecture Considerations

* Internode latency
*n,, onh node architectures

B Summary

Incompressible Navier-Stokes Equations

811 1 9
— u-VvVu —V —V“u
ot T Pt Re

V-u = 0

B Key algorithmic / architectural issues:

— Unsteady evolution implies many timesteps, significant reuse of
preconditioners, data partitioning, etc.

— div u =0 implies long-range global coupling at each timestep
—> iterative solvers

communication intensive
(comes from multiscale math — not physics directly)

— Small dissipation = large number of scales - large number of
gridpoints for high Reynolds number Re

Navier-Stokes Time Advancement

ou
Ot

Fu- Vu

V-u

—Vp+ équ
0

B Nonlinear term: explicit
— k th-order backward difference formula / extrapolation (4 =2 or 3)
— k th-order characteristics (Pironneau ’ 82, MPR ‘90)

M Linear Stokes problem: pressure/viscous decoupling:
— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)
— Poisson equation for pressure (computationally dominant)

Some Turbulence Examples

Optimizing Heat Transfer with
Wire-Coil Inserts J. Collins, ANL

Heat Tras

e 02607

fg_r_‘:_ Ex

Nusselt Number (5-5000)

X hpERA &0

e/D=0.2507 e/p=0.1253
&/D=0.2507 eip=0.1880 §
e/D=0.2507 ei/p=0.2507
e/D=0.2507 e/p=0.3760 |}
e/D=0.2507 e/p=0.4273
e/D=0.2507 e/p=0 4700
e/D=0.2507 e/p=05629
Plain Tube
Dittus-Boelter Relation

Reynolds Number (1000-200,000)

Film Cooling
Duggleby et al.,
TAMU

Pipe Iow:
Re_= 550
Re_ =1000

G. El Khoury, KTH

Major Difference in Jet Behavior for Minor
Design Change

Simulation Results:

— Small perturbation
yields O(1) change in
Jet behavior

MAX1 —~—_

— Unstable jet, with low-
frequency (20 — 30 s)
oscillations

— Visualization shows
change due to jet/
cross-flow interaction

MAX2 —

— MAX2 results NOT
predicted by steady
RANS (URANS ok)

Tangential Velocity
(symmetry plane)

hows clear wave
pattern

10% drag 3 # Short pipe (2D)
B DNS results are being used reduction! 0 Long pipe
to calibrate new RANS -1951
models in commercial % o Experiment
engineering codes. S o,
-2.05 T
Re=3400

3.45 3.5 3.55 3.6 3.65
log ; O(Reb)

DNS of Flow around a NACA4412 Wing Profile

Armin Hosseini et al. (KTH)

e ML

B Re, =400,000 with 5* angle of attack. .4
® 3.2 billion gridpoints il et

Ho a, R,, Schilatter, P., Hanifi, A. and Henningson, D. S.: Direct numerical simulation of the flow

arou ection at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015,
Delft. The Netherlands.

DNS of Flow around a NACA4412 Wing Profile

Armin Hosseini et al. (KTH)

B Formation of hairpin vortices(top),
followed by breakdown (right)

B Flow tripped at 10% cord, similar to wind-
tunnel experiments

DNS For I.C. Engine Analysis M. Schmitt, ETH Zurich, 2014

Goals: - cycle-to-cycle var. ,
4 4 Streamlines: 90°CA Axial Mean Vel. Axial RMS Vel.

- thermal anaIySiS Experiment Simulation

@é

'-‘

\ |
\ —
2es3 §
gy "~) b4
/)
LS

Vel. mag. 7[m/s]

Very good agreement for all
available experimental data!

-

Compression: Significant Increase in Range of Scales at TDC
— M. Schmitt, ETHZ 2014

Impacts thermal boundary layer, initial conditions for ignition.

180°CA - BDC 225°CA 270°CA 306°CA

750 I W 850
1), K]
600 W 675
o70eca Heat flux [Wim?] qagecA Heat flux [W/m?]

(cylinder head) (cylinder head)

500l & W575

1.0 e4 N 3.5 c4 1.3 e4 NN 4.7 €5

A Sobering Fact: We Are Not Running Faster

Panda Thermal Stratification Benchmark
(Obabko, Tomboulides, Aithal, Merzari, F. 2014)

Low density jet entering stratified background
Very long time integrations

— 1 month of wall clock time
— 2 minutes of physics

— Desire 2 hours > 5 years wall-clock time on 8K cores.

— Nek5000
— E=190,000 elements
- N=7
— n~EN3=62 million
— P =16384 MPI ranks
e n/P~3000

For straight hydro, cannot further reduce n/P
— Topic of this talk

DB: pab2a.nek5000
Cycle: 2000

L

0

T-Awis

-0

A Computational Quandary

® We are not running faster

— Clock speeds are fixed at ~ 1 — 4 GHz for past 10 years
— Power concerns favor reduced clock speeds and more parallelism.

— Communication costs limit granularity to be relatively coarse.

B \What can we do?

— High-Order 10 X 10 X
— Scalable solvers 10 x 10 x
— Lower communication costs 10 x 1 X

— Lower n,,, on accelerators
— Processor-in-memory (PIMs)

Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size A) over distances L >>1|. If speed ~ 1, thent; , ~ L/ A

— Dispersion errors accumulate linearly with time:

~|correct speed — numerical speed| * t (for each wavenumber)

>errofy .., ~ (L/A) ™| numerical dispersion error |

— For fixed final error &, require: numerical dispersion error ~ (A /L)€, << 1.

High-order methods can efficiently deliver small dispersion errors.
(Kreiss & Oliger 72, Gottlieb et al. 2007)

High-Order Spatial Discretizations

Example: Spectral element method (Patera 84, Maday & Patera 89)

— Variational method, similar to FEM, using GL quadrature.

— Domain partitioned into E high-order hexahedral elements

— Trial and test functions represented as Nth-order tensor-product
polynomials within each element. (N~ 4 -- 15, typ.)

e n ~ EN’ gridpoints in 3D
e Fast operator evaluation: O(n) storage, O(nN) work

— Converges exponentially fast with N for smooth solutions.

2D basis function, N=10

Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution (Kovazsnay ‘48)

d 4 orders-of-magnitude

error reduction when @t

doubling the resolution in

[[v=vull .1
. . —_— ¥ H-oyqe|
each direction [Vl

\\\W?// Y]

4
4 5 6 7 8 g o 11 12 13 14

Jd For a given error, v
A Reduced number of gridpoints v, = 1l—e

B

T cos 2my

A
_E)m:
2

1 Reduced data movement. \ .. Re \IREQ
— 2 T\ 4

aQ Reduced memory footprint. vy = sin 27y

+ 42

Excellent transport properties, even for non-smooth solutions

e e R 4
e L iy
e A i S g
? =

e o Y e
el T
‘Q ? . 2 Wy T B
A e e - o
.“-..—r_:‘._,ng == --‘_.h._" T
T e e e A e .ﬂ‘h‘-.

Initial Condition K, =16, N=2

Convection of non-smooth data on a 32x32 grid.

cf. Gottlieb & Orszag 77
(K, x K, spectral elements of order N). (977)

Impact of Order on Costs

 To leading order, cost scales as number of gridpoints, regardless of
approximation order.

- Consider Jacobi PCG as an example:

Il
N
+

=
[=]

X a |g o !
| Il

|

152

|W
|
1=
I
Q
o

- Only one operation depends on order—the remaining, memory-bound,
depend on number of gridpoints, n.

J Reducing n is the most effective way to reduce data movement.

Cost vs. Accuracy: Electromagnetics Example
M. Min, ANL

* For SEM, memory scales as number of gridpoints, n.
» Work scales as nN, but is in form of (fast) matrix-matrix products.

CPU time vs. #dofs, varying N.

Error vs. #dofs, varying N

10
+ N=5 + N=b
- + N=6
+ N=6 + N=8
+ N=8 10.4 + N=10| |
103, + N=10 + N=12
_ 4 N=14
—N=16 10°
2
& 10" o
[}
10°
1
10+ ol
10-12 |
1003 S — 0 1 2 3 4 5 6 7 8
10 10 10 10 10 degree of freedom x10°
degree of freedom

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon

Nonlinear Example

Q: Do the benefits in linear

problems carry over to

NREL Channel Flow Study

nonlinear cases?

B Test case: DNS Re, =180 (MKM’99)

Performance

10000

1000

100

wall-clock time (min)

F T T T T LI |
- 312K gridpoints per core

= o——o Nek5000
- ———- ideal
I D_DOpenFOAM

10

B Results:

1 111 I
100
P: # of processors

11 1 II
1000

Sprague et al., 2010

— Nek5000 & OpenFOAM have the same cost per gridpoint

Nonlinear Example: NREL Channel Flow Study

Sprague et al., 2010

B Accuracy: Comparison to several metrics in turbulent DNS, Re_ =180 (MKM’ 99)

Accuracy
| | | |
- - =T T
= - i L, L
o = —
™
:“:: Yy Ly
— T [:l~
E
- MKM (1999)
T, -
ﬁlﬁ | .;._"' o—0 SEM |
56 & fbe——-A F\/ -
L]]]]
}'4.15 30 75 100 125 150

ny: # of points in wall-normal direction

B 7th-order SEM needs an order-of-magnitude fewer points than 2"d-order FV.

Solvers

B For incompressible Navier-Stokes, global communication via a pressure
(Poisson) solve is inescapable.

— This is a classic example of applied mathematics being used to tackle a
problem that is intrinsically multiscale.

B Fast robust Poisson solvers are essential.

B \We use a two-step procedure:

1. Projection: compute best approximation p* from previous time steps
Typically a 2-4X reduction in iteration count per step.
Sometimes need only one iteration per step.

2. Muiltigrid preconditioned CG or GMRES to solve for perturbation
Adp = g'-Ap

Multigrid with Additive Schwarz-Based Smoothing

S
|

E

(Dryja & Widlund 87, Pahl 93, Lottes & F 05)

S REAZYRer + REAG Ryr

e=1

=] =} B a9

Schwarz Overlapping Smoother: Local
Poisson problems with homogeneous

Dirichlet boundary conditions.
Fast tensor-product solvers.

* 4ol

Coarse Grid Solve: Poisson problem
using linear finite elements on entire

spectral element mesh, A, (GLOBAL).

Fast Solvers for p-Multigrid

B Schwarz Smoothers: fast diagonalization method (Rice et al. 64, Couzy 95, F.02)

— Exploit local tensor-product structure:
A= U N F N (ST

— Complexity < A p

W p-multigrid schedule:
N: =N
N,=3
N, =1 (coarse-grid solve)

B |Coarse-grid solve: Direct, XX (F. & Tufo 01) — P~100,000 or less
Custom AMG: (Lottes 08/11) — P~10°...10°
Sophisticated communication kernel for AMG
Communication intensive!

Putting At All Together: Subassembly with 217 Wire-Wrapped Pins

— 3 million 7t-order spectral elements (n=1.01 billion)
— 16384-131072 processors of IBM BG/P

— 15 iterations per timestep; 1 sec/step @ P=131072
— Coarse grid solve < 10% run time at P=131072

Strong Scaling

1000

R
R
it
~
\ i

g
\\

nN=0.8 @
P=131072

e

time: n=988M ——
ideal ——

7300 pts/

~._processor

\\

I
16384 32768

y i

) _):;j ;_"’)"f

L
65536 131072

Scaling to Beyond 1 Million Processes

217 Pin Problem, N=9, E=3e6:

Strong Scaling, 1 Million Processes

10

— 2 billion points

— BGQ —-524288 cores

1 or 2 ranks per core

Reactor Assembly
n=2.0 billion
w / S. Parker, ALCF

— A mixture of CG / multigrid gl

o
(V)
d
(7))
— 60% parallel efficiency at o} \
1 million processes © 4000 pts/core
£
i: 1 process/core —— 2000 ptSIproceSS
— 2000 points/process 2processfcore -

0.1

16384 32768 65536 131072 262144 524288

Number of Cores

Some Exascale Questions

m Will this scaling continue as we move to exascale?
M |s this the best we can do?

B What, exactly, is better, or even good?

— Good node performance
— Strong scaling to large processor counts.

B Strong scaling is ultimately limited by costs that do not
go to zero as n/P->0:

t~c,n/P + ¢, +c, log P

— ¢, ~communication overhead
~ other overhead (memory latency on GPU)

~ Amdahl
— C5 ~ can be mitigated by hardware on the NIC

Granularity

B One often hears the argument — exascale means running bigger, not faster.
— This is the classic weak scaling strategy, and it is fine, up to a point.

B However, larger problems take more steps... run time is in fact longer, even
under perfect weak scaling.

B We are interested in understanding what is setting the limits on strong scaling
applications, because that sets the limits on speed.

For time-resolved simulations, number of steps scales as O(n'’3), whether implicit or explicit.

Two Run-Time Scenarios

O/@ @/@ @/@ @/@
offoljolfo

A A A

B Fully Populated Cluster: job on every node.

B Supercomputing Center:

— Job not using all nodes. O/@ /@q/@ /@m/Q /QA/Q /Q /QO/Q

B Our question: C/GD /@Q/@ /@ /Q /Q \/Q /Q \/Q /Q
— Why stop at P nodes,

instead of 2P ?7? /Q /Q /C> /Q /Q /Q /Q /Q /Q /Q

B Study model Poisson C/Q /Q/Q /Q/Q /Q/Q /Q /QQ/Q

problem to get insight.

Model Problem: Poissonwith finite differences

1 i i B Consider complexity estimates for 3D
—J: O—O \J>——:?.s Poisson with several iterative solvers.

¢/
0O
\/
O
¢/
)
\/
<I>
]

M n/P points on each processor

O

\/

O
", olb, N
B S LITLEEEE

I
*—0—o
I

processor p data from neighbor
allows stencil update

Metric for Scalability

B P-processor solution time for n points:
— T(P,n) = TA(P,n) + TC(P,n), or nonoverlapping comm.
— T(P,n) = max (TA(P,n), TC(P,n)) overlapping comm.

B Seek conditions where communication is subdominant, T, > T :
— TA(P,n) = T(1,n)/ P the parallel work

— T¢(P,n) the total communication cost = sum t (m)

100000

time (sec)

1000

10000 |

Linear Communication Model

——
'delta' u 1:3
'sp2'u 1:3

'paragon’'u 1:3
'asci_red'u 1:3

'bgp'u 1:3
'bgq'u 1:3

100

1000

words (64-bit)

Linear communication model :

t. (m)= o*+p*m, m: 64-bit words

Nondimensionalize by t, [c =a*b]:
t,(M)= (a+pm)t,

a=a/t,, p=p/t,

25 Years of Nondimensional Machine Parameters

YEAR t (us) o p* a B m, . MACHINE

1986 50.00 5960. 64 |119.2 1.3 93 | Intel iPSC-1 (286)
1987 333 5960. 64 18060 192 93 | Intel IPSC-1/VX
1988 10.00 938. 2.8 | 93.8 .28 335 | Intel iPSC-2 (386)
1988 250 938. 2.8 | 3752 11 335 | Intel iPSC-2/VX
1990 100 80. 2.8 800 28 29| Intel iPSC-i860
1991 100 60. .80 600 8 75| Intel Delta

1992 066 50. .15 758 2.3 330/ Intel Paragon
1995 020 ©60. .27 | 3000 15 200| IBM SP2 (BU96)
1996 016 30. .02 | 1800 1.25 1500, ASCI Red 333
1998 006 14. .06 | 2300 10 230| SGI Origin 2000
1999 005 20. .04 | 4000 8 375| Cray T3E/450
2005 002 4. .026| 2000 13 154| BGL/ANL

2008 0017 4. .021| 2353 12.6 185 | BGP/ANL

2011 .0007 2.5 .002| 3570 3 1190| Cray Xe6 (KTH) [m2=24]
2012 .0010 4. .005| 5000 5 1000 BGQ/ANL

B m, == a/p ~ message size - twice cost of single-word message

B t, based on matrix-matrix products of order 10—13

25 Years of Nondimensional Machine Parameters

YEAR t (us) o p* a B m, . MACHINE

1986 50.00 5960. 64 |119.2 1.3 93 | Intel iPSC-1 (286)

1987 333 5960. 64 18060 192 93 | Intel iPSC-1/VX === GPU
1988 10.00 938. 2.8 | 93.8 .28 335 | Intel iPSC-2 (386)

1988 250 938. 2.8 | 3752 11 335 Intel iPSC-2/VX <= GPU
1990 100 80. 2.8 800 28 29| Intel iPSC-i860

1991 100 60. .80 600 8 75| Intel Delta

1992 066 50. .15 758 2.3 330/ Intel Paragon

1995 020 ©60. .27 | 3000 15 200| IBM SP2 (BU96)

1996 016 30. .02 | 1800 1.25 1500, ASCI Red 333

1998 006 14. .06 | 2300 10 230| SGI Origin 2000

1999 005 20. .04 | 4000 8 375| Cray T3E/450

2005 002 4. .026| 2000 13 154| BGL/ANL

2008 0017 4. .021| 2353 12.6 185 | BGP/ANL

2011 .0007 2.5 .002| 3570 3 1190| Cray Xe6 (KTH) [m2=24]

2012 .0010 4. .005| 5000 5 1000 BGQ/ANL

B m, == a/p ~ message size - twice cost of single-word message

B t, based on matrix-matrix products of order 10—13

Complexity for Jacobi Iteration
. o . . 1
Point Jacobi iteration (7-point stencil): u = —(f; — Z a;u;)
i j#i
— Work: T, ~ 14n/Pt,

— Communication: 7., ~ (6+ (n/P) 3 (I/m,)) at,
— For fixed n/P, Jacobi complexity is P-independent

— However, algorithmic scaling is poor (iteration count scales as n?3)
— a more communication intensive approach is required

— conjugate gradient iteration, multigrid, etc.

— Jacobi is nonetheless a reasonable surrogate for explicit
timesteppers

Complexity Models for Iterative Solvers

— Point Jacobi iteration (7-point stencil, 3D):

— Work: T,,~ 14n/Pt,
— Communication: T,,~ (6+ (n/P)??(1/m,)) at,
— Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)
— Work: T, .~ 27n/Pt,
— Communication: T..c~T,, +4log, P at,

— Geometric Multigrid:

— Work: T, c~ 50n/Pt,
— Communication: T.,;~ (8log, n/P + 30/m,(n/P)?? + 8 log, P) at,

Scaling Estimates: Jacobi

B Q: How large must n/P be for T, ~ T, ?

1 2/3
T. _ 6(1 + mQ(n/P))oz _
Tq 14n/P -
a = 2300 |
8 = 12.6 » BG/P parameters
mo, = 185)
(n/P) = 2000

- Jacobi scaling is independent of P.
- Of course, need occasional all _reduce to check convergence...
 Also, not a scalable algorithm (but, similar to explicit timestepper)

Scaling Estimates: Conjugate Gradients (I)

. 6 (1 + m%(n/P)2/3 + 41095 P) @ _

T, 27 n/P -

P = 10°, log, P = 20, (n/P) =~ 8500
P = 10° log, P = 30, (n/P) ~ 12000

d The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.

d On BGI/L, /P, /1Q, however, all_reduce is effectively P-independent.

all_reduce time [zeconds)

Eliminating log P term in CG

® On BGI/L, /P, /Q, all_reduce is nearly P-independent.
B For P=524288, all_reduce(1) is only 4¢x !

BQ/Q Softwarg all_reduce

0.01 e
;5*‘5{
.__..-"-':{',fl,r"
fﬁfiﬁﬁyf
0,001 f W
0, 0001
le-05 F
Y2 ping-pong
1=-08

Messag

€ size ' (64-bit words}™

100000

all_reduce time (seconds)

BG/Q hardware all_reduce

0,01

0,001

0,0001

1605 b

all_reduce

Y2 ping-pong

1e-05

10 00 ooa 1000 100000
Message size m- (614-b|t wor&s)

Eliminating log P term in CG

2x4
6(1 + -L(n/P)2/3 4+ 4a1dg- P
T + 5, (n/P)/2 + 41ggo P o <1
To. 27 n/P -
n/P ~ 1200

d On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all _reduce.

d In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

- 10x faster run, but no reduction in power consumption.

Scaling Estimates: Multigrid

. _ (8logan/P + 5 (n/P)?/® + 8logy P)a
To 50n/P =

n/P (P =103) =~ 13,000
n/P (P =10%) ~ 17,000
n/P (P = 10°) =~ 22,000

 In this case, granularity is relatively high because of the 8 log, P
term, which is associated with the coarse solve in MG.

J Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x
gain in scalability.

Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operations.

Further savings might be possible by reducing the first term.

Measured and Modeled Multigrid Performance

10000

1000 ¢

(Ta+ T/ Ty

0,1

e 1.1: Left: Measured scalability for 3D geometric multigrid, (T4 + T¢)/Ta as a function of (1

Measured BG/P Multigrid Performance

100

lop

=4 +
B x
16 =
32 =
64
128
256
512
% 1024
™\ 2048
s 4086
] v\ 8152
- 16384
" o % 32768 ——
N EFf=0,5
Eff=1.0

¢4 4 »rpro

4

10 100 1000
n/P

10000

0.1

Modeled BG/P Multigrid Performance

Model: P=4-32768 —
EFF=0,5
Eff=1.0 —

10 100 1000 10000 100000

n/P

wying processor counts, P. Right: Modeled scalability for 3D geometric multigrid using 1.1.

Measured and Modeled Multigrid Performance

10000

1000 ¢

(Tt T)IT,

0.1

Measured BG/P Multigrid Performance

100

lop

=4 +
8 x
16 =
32 w
64
128 o
256
512
1024 -
2048 =
4096 «
8132 <
16384 1
32768 —+—
Eff=0,5
Eff=1.0

10 100 1000
n/P

10000

10000

0.1

Modeled BG/P Multigrid Performance

Model: P=4-32768 —
EFF=0,5
Eff=1.0 —

10 100 1000 1 100000

n/P

e 1.1: Left: Measured scalability for 3D geometric multigrid, (T4 + T¢)/Ta as affunction of (1

wying processor counts, P. Right: Modeled scalability for 3D geometric multigri

using 1.1.

Tpo=T¢

Scaling Estimates: Multigrid

7. (8logzn/P + 22(n/P)?/3 + 81092 P)a .
To 50n/P =

n/P (P =103%) ~ 13,000
n/P (P =10°) ~ 17,000
n/P (P = 10%) =~ 22,000
d Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x
gain in scalability.

Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operation

 Some vendors are already moving in this direction (yay).

O Further savings might be possible by reducing the first term.
(Algortinmic issues addressed by Bell, Dalton, Olson, 2013.)

This is an excellent co-design opportunity.

What About Accelerators?

What About Accelerators

B A combined strong-scale / weak scale study:
— Weak scaling — horizontal lines
— Strong scaling — vertical lines

Timing Runs for titanGPU

«—e GPUl
—e GPU2
«—e GPU4

GPUS

10°

10° 10* 10° 10° 10’
Number of Grid Points (N=14)

— Weak scaling sustained to all nodes on Titan

NekCEM + OpenACC

NekCEM Runtime Comparison

B GPU
600" ' mmmm cpPU 1
B CPU 16

700

500¢

Y 200t

2
= 300¢

2007

100¢

d Tesla (PGI) Maud (PGI) Titan (PGI) Titan (CCE)
K20c K40m K20x K20x
2.0GHz 3.4GHz 2.2GHz 2.2GHz

B OpenACC variant sustaing 2.5x 16-core MPI version.

Disconcerting Observation

B The P=1 case rolls over before communication effects kick in.

M n/P is limited to be > 125,000 to get peak performance per
node (this is for electromagnetics, CFD is higher).

Timing Runs for titanGPU

«—e GPU1
e GPU2
e GPU4
10°} GPUS8

10°

Time (s)

101_

10° ' '
10° 10* 10° 10° 10’
Number of Grid Points (N=14)

GPU Performance Scaling: N=14

+__Timings on Titan GPU (N=14)

10 1*—1mings on Titan CPU (N=14) 1o 0mings on Vesta CPU (N=14)
oo GPU1 e CPU1 e CPU1
e—o GPU?2 e—o CPU2 +—o CPU2
3| oo GPUS 3o CPU4 3lloe
10°|. & cpus 10°|s « cpus ° 10 .o Egﬂg
0 0 oo U 0 CPU 16
O 12 ol e 0 12 Hcpuaz
v v o CPU 64 v oo ’
£ 10 £ 10 o—e CPU128 £ 10 o~ CPU G4 /;
F N F . F ool crutsll /7 Siahiaitylimit
101,,,,,,,f't,ri"lg:icé'?,“[“,'t ,,,,,,, A 101 77777777777777777 s 101
granularity limit
10° : : : : 10° : : : : 10° : : : :
102 100 10* 100 10° 10 102 100 10 100 10° 10 10° 100 100 100 10° 10
Number of Grid Points Number of Grid Points Number of Grid Points
(a) (b) (c)

Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)? increased with £ = 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

B Strong-scale limit: n/P so small that n > 0
B Granularity limit: one spectral element per rank

B Here, we see that the GPU hits min (n/P) because n,, is large ®

B GPU version is still faster than CPU (and better in power by 2.5 x!)

GPU Performance Scaling: N=7

»__Timings on Titan GPU (N=7)

y +__Timings on Titan CPU (N=7)

10 1o%—1imings on Vesta CPU (N=7)
e—e GPU1 e—e CPU1 e—e (PU1
e—e GPU2 —o CPU2 o—o (CPU2
3[|o—s GPU4 3[|e-e cPUS 3l|e—e cPUS
10 e—o GPUS 10 o CPUB 10 e—o CPUS
—_ «—o CPU16 —_ o—o CPU 16
) oo CPUS2) oo CPUR
[0} 102 s CPU 64 o 102 s CPU 64
E oo CPUL28 E o CPUI2E
10t 10t
| granularity limit
10° ‘ ‘ ‘ ‘ 10°5—= ————— —— —— 10° ‘ ‘ ‘ ‘
102 100 100 100 10° 10 102 100 10 100 10® 10 102 100 100 100 100° 10
Number of Grid Points Number of Grid Points Number of Grid Points
(a) (b) (©)

Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with £ = 1,2,4,8,16, 32,64, 128,256, 512,1024,2048 and N = 7.

B Here, we have fewer points per element, so CPU version can be
driven to smaller (n/P).

B At this point, it is faster than the GPU version, which suffers from
large n,,

B GPU now also exhibits some communication overhead.

Disconcerting Observation

® When | pressed the vendor, | was told — exascale means
“Think Big”

M But that’s clearly not the road to speed

— Note, if you double P and reduce time to solution by %2, the power
consumption is constant.

Timing Runs for titanGPU

«—e GPU1
e GPU2
e GPU4
10°} GPUS8

10°

Time (s)

101_

10° ' ' '
10° 10* 10° 10° 10’
Number of Grid Points (N=14)

n,,— an old concern important for exascale

200 F ————————————————————
1/K=R A.R.
o pPr—————————— e, —————————
N 1
L] S/N + K Table 6 Values for N/, (FORTRAN SAXPY)
FORTRAN
Computer Nyja Peak Performance
| CRAY-1 20 45
N CRAY X-MP 37 101
1/2 CRAY-2 30 99
CYBER 205 238 170
FUJ. VP-100 200 140
FUJ. VP-200 120 190
IBM 3090/VF 34 53
NEC SX-1 30 240
NEC SX-2 80 575

Supercomputers and Their Performance in Computational Fluid Dynamics, Kozo Fujii, Springer 1993.

n,, Requirements for:? Candidate Node to Yield Speedup

Sp = n-S-P (speed, in mflops)
S1 = observed saturated speed, in flops, n > 1

e Let n be total problem size (gridpoints, say), and n 1 be the
local problem size such that

) = %Sl(”sat)

e Let W := w - n be the total number of flops and
w be the number of flops per gridpoint.

e Choose P =n/ni (50% efficiency)

e Time to solution: Tp = w-no_own
Sp ﬁSlp
w-n w-ni

n,, Requirements for a Candidate Node to Yield Speedup

e Time to solution: Tp = w-no_ wn
Sp 7751P

H In addition to internode latency and S, we need to ensure that vendors
are paying attention to n,,.

— They have little reason to do so for, say, clusters, workstations, etc.
but it is imperative for HPC architectures.

Breaking the Tyranny of Timescales

B Some Examples:
— Pipe flow — L, D, transition ~ D not L >> D (particularly with roughness)
* Hydro convergence on short timescale, D/U
» Heat transfer, however, is often L/U

— One idea is to use surrogate hydro simulations as advecting
velocity field (works for “one-way” coupling).

— Turbulence —
e Can we move to ensemble averages instead of long-time averages?

e How would we initialize (say) 50 instantiations such that:
— Appropriately distinct
— Avoid long wait for each initial transient to decay
(weather community has done work in this area...)

— More physics, etc.

Hm Partl:

Summary

High-order and multilevel solvers for turbulent DNS / LES are certainly viable

ways to make performance gains.

m Partll:

Reducing turn-around time in post-frequency-scaling era is challenging,
particularly under tight power budgets.

Strong scaling is central to HPC.

e As a community, we need to police ourselves by presenting strong-scaling
studies, rather than weak-scale.

Relegating more complex tasks (e.g. parallel prefix support) to the NIC could be
of value.

Paying close attention to reduced n,,, on multicore/GPU nodes might pay more
dividends than increased peak, because one then gets the multiplicative effect of
increasing P.

Hope on the horizon:
 Alternative modeling approaches (ensemble averaging, eftc.)

* PIM (processor in memory) architectures:
low computational intensity of PDE-based solvers.

e efc.

temperature
600.0

—523.8
447.6
3714

206.1

Steam
Generator

Core

Thank You!

