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Turbulence in a heat-exchanger inlet. 
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Industrial Example 
!! 12 hour turnaround for result on the left: 

–! 6 hours to mesh, 6 hours to run on 16K cores 
!! 3 Days for result on the right (mostly meshing…) 
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Outline 

n Part 1:    
• Target Problems 
• Where we are today 

n Part 2: Strong Scaling and Exascale Algorithm/  
      Architecture Considerations 
• Internode latency 
• n1/2  on node architectures 

n Summary 
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Incompressible Navier-Stokes Equations 

!! Key algorithmic / architectural issues: 

–! Unsteady evolution implies many timesteps, significant reuse of 
preconditioners, data partitioning, etc. 

–! div u = 0 implies long-range global coupling at each timestep   
 " iterative solvers 

   communication intensive 
                       (comes from multiscale math – not physics directly) 

    
–! Small dissipation " large number of scales " large number of 

gridpoints for high Reynolds number Re 
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Navier-Stokes Time Advancement 

 

! Nonlinear term:  explicit   
– k th-order backward difference formula / extrapolation   ( k =2 or 3 ) 
– k th-order characteristics   (Pironneau 82, MPR 90) 

! Linear Stokes problem: pressure/viscous decoupling: 
– 3 Helmholtz solves for velocity               ( easy  w/ Jacobi-precond.CG)

– Poisson equation for pressure (computationally dominant) 
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      Some Turbulence Examples 

 Film Cooling 
Duggleby et al., 
TAMU 

Heat Transfer: Exp. and Num. 

Reynolds Number (1000-200,000) 
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 Optimizing Heat Transfer with 
Wire-Coil Inserts  J. Collins, ANL 

Pipe Flow: 

Re! = 550 

Re! = 1000 
G. El Khoury, KTH 
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Major Difference in Jet Behavior for Minor 
Design Change 

MAX1 

MAX2 

Simulation  Results:  

–  Small perturbation 
yields O(1) change in 
jet behavior 

–  Unstable jet, with low-
frequency (20 – 30 s) 
oscillations 

–  Visualization shows 
change due to jet / 
cross-flow interaction 

–  MAX2 results NOT 
predicted by steady 
RANS (URANS ok) 
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DNS of Flow around a NACA4412 Wing Profile  

!! Rec = 400,000 with 5! angle of attack.  
!! 3.2 billion gridpoints 

Hosseini, S. M., Vinuesa, R., Schlatter, P., Hanifi, A. and Henningson, D. S.:  Direct numerical simulation of the flow 
around a wing section at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015, 
Delft, The Netherlands.  

 

Armin Hosseini et al. (KTH) 
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DNS of Flow around a NACA4412 Wing Profile  

!! Formation of hairpin vortices(top), 
followed by breakdown (right) 

!! Flow tripped at 10% cord, similar to wind-
tunnel experiments 

Armin Hosseini et al. (KTH) 
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DNS For I.C. Engine Analysis    M. Schmitt, ETH Zurich, 2014 

!! h 
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 Compression: Significant Increase in Range of Scales at TDC 
                  – M. Schmitt, ETHZ 2014 

12 

Impacts thermal boundary layer, initial conditions for ignition. 
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A Sobering Fact:  We Are Not Running Faster 

Panda Thermal Stratification Benchmark 
 (Obabko, Tomboulides, Aithal, Merzari, F. 2014) 

!! Low density jet entering stratified background 

!! Very long time integrations 
–! 1 month of wall clock time 
–! 2 minutes of physics 
–! Desire 2 hours ! 5 years wall-clock time on 8K cores. 

!! – Nek5000 
–! E=190,000 elements 
–! N=7 
–! n ~ EN3 = 62 million 
–! P = 16384 MPI ranks 

•! n / P ~ 3000 

!! For straight hydro, cannot further reduce n/P 
–! Topic of this talk 
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A Computational Quandary 

n We are not running faster 

–  Clock speeds are fixed at ~ 1 – 4 GHz for past 10 years 

–  Power concerns favor reduced clock speeds and more parallelism. 

–  Communication costs limit granularity to be relatively coarse. 

n What can we do? 
     Time Savings  Power Savings 

–  High-Order           10 x                      10 x 
–  Scalable solvers           10 x                      10 x 
–  Lower communication costs         10 x                        1 x 
–  Lower n1/2 on accelerators   (memory latency) 
–  Processor-in-memory (PIMs) 
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Influence of Scaling on Discretization 

 Large problem sizes enabled by peta- and exascale computers allow propagation of 
small features (size λ)  over distances L >> l.     If speed ~ 1, then tfinal ~ L/ λ. 

–  Dispersion errors accumulate linearly with time:  
  

~|correct speed – numerical speed| * t                         (for each wavenumber) 

! errort_final ~ ( L / λ ) * | numerical dispersion error | 

–  For fixed final error εf, require:  numerical dispersion error ~ (λ / L)εf, << 1. 

 

High-order methods can efficiently deliver small dispersion errors.            
                                                    (Kreiss & Oliger 72,  Gottlieb et al. 2007) 
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2D basis function, N=10 

High-Order Spatial Discretizations 
Example: Spectral element method (Patera 84, Maday & Patera 89) 

– Variational method, similar to FEM, using GL quadrature.

– Domain partitioned into E high-order hexahedral elements 

– Trial and test functions represented as N th-order tensor-product 
polynomials within each element.  (N ~ 4 -- 15, typ.) 

• n ~ EN 3 gridpoints in 3D 

• Fast operator evaluation:  O(n) storage, O(nN) work 

– Converges exponentially fast with N for smooth solutions.  
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Spectral Element Convergence: Exponential with  N 

Exact Navier-Stokes Solution  (Kovazsnay 48) 
!! 4 orders-of-magnitude 

error reduction when 
doubling the resolution in 
each direction 

!! For a given error, 
!! Reduced number of gridpoints  

!! Reduced memory footprint. 

!! Reduced data movement. 
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Excellent transport properties, even for non-smooth solutions 

Convection of non-smooth data on a 32x32 grid.   
(K1 x K1 spectral elements of order N). (cf. Gottlieb & Orszag 77) 
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Impact of Order on Costs 

 z = D -1 r 
 r = r t z 
 p = z + β p 
 w = A p 
 σ = w t p 
 x = x + α p 
 r = r – α p 

❑  Only one operation depends on order—the remaining, memory-bound, 
depend on number of gridpoints, n. 

❑  Reducing n is the most effective way to reduce data movement. 

❑  To leading order, cost scales as number of gridpoints, regardless of 
approximation order.    

❑  Consider Jacobi PCG as an example: 
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•  For SEM, memory scales as number of gridpoints, n.   
•  Work scales as nN, but is in form of (fast) matrix-matrix products. 

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon 

CPU time vs. #dofs, varying N.                                   Error vs. #dofs, varying N 

Cost vs. Accuracy:  Electromagnetics Example 
              M. Min, ANL 
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Nonlinear Example:   NREL Channel Flow Study 

n  Test case:  DNS Ret = 180   (MKM’99) 

n  Results:      — Nek5000 & OpenFOAM have the same cost per gridpoint 

Sprague et al., 2010 

P:  # of processors 

 Performance 

Q: Do the benefits in linear 
problems carry over to 
nonlinear cases? 
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Nonlinear Example:   NREL Channel Flow Study 

!! Accuracy:   Comparison to several metrics in turbulent DNS, Re! = 180     (MKM 99) 

!! 7th-order SEM needs an order-of-magnitude fewer points than 2nd-order FV. 

Sprague et al., 2010 

SEM 
 

FV 

ny: # of points in wall-normal direction  

 Accuracy 
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Solvers 

n  For incompressible Navier-Stokes, global communication via a pressure 
(Poisson) solve is inescapable. 
–  This is a classic example of applied mathematics being used to tackle a 

problem that is intrinsically multiscale. 

n  Fast robust Poisson solvers are essential. 

n We use a two-step procedure: 
 1.  Projection: compute best approximation p*  from previous time steps 

 Typically a 2-4X reduction in iteration count per step.  
 Sometimes need only one iteration per step. 

2.  Multigrid preconditioned CG or GMRES to solve for perturbation 

                             A dp  =  gn - A p*  
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Multigrid with Additive Schwarz-Based Smoothing  

d

Schwarz Overlapping Smoother:  Local  
Poisson problems with homogeneous  
Dirichlet boundary conditions. 
Fast tensor-product solvers. 

Coarse Grid Solve: Poisson problem 
using linear finite elements on entire 
spectral element mesh, A0 (GLOBAL). 

(Dryja & Widlund 87, Pahl 93, Lottes & F 05) 
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Fast Solvers for p-Multigrid 

n  Schwarz Smoothers:  fast diagonalization method  (Rice et al. 64, Couzy 95, F.02)  

–  Exploit local tensor-product structure: 
  

–  Complexity <  A p 

n  p-multigrid schedule: 
 Nf  = N 
 N1 = 3 
 N0 = 1  (coarse-grid solve) 

 

n  Coarse-grid solve:  Direct, XXT (F. & Tufo 01)       – P~100,000 or less 
             Custom AMG: (Lottes 08/11) – P~105…109 

   Sophisticated communication kernel for AMG 
 Communication intensive! 
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Putting At All Together:  Subassembly with 217 Wire-Wrapped Pins 
–! 3 million 7th-order spectral elements (n=1.01 billion) 
–! 16384–131072 processors of IBM BG/P 
–! 15 iterations per timestep;  1 sec/step @ P=131072 
–! Coarse grid solve < 10% run time at P=131072 

&=0.8 @  

P=131072 

Strong Scaling 

7300 pts/ 

processor 
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Strong Scaling, 1 Million Processes 

Reactor Assembly 
n=2.0 billion 
w / S. Parker, ALCF 

4000 pts/core 

2000 pts/process 

Scaling to Beyond 1 Million Processes 
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Some Exascale Questions 

n Will this scaling continue as we move to exascale? 
n  Is this the best we can do?    

n What, exactly, is better, or even good? 

–  Good node performance   
–  Strong scaling to large processor counts. 

n  Strong scaling is ultimately limited by costs that do not 
go to zero as n/P!0:   

  t ~ c1 n/P  +  c2  + c3  log P 

 
–  c2   ~ communication overhead 

      ~ other overhead (memory latency on GPU) 
      ~ Amdahl 

–  c3   ~ can be mitigated by hardware on the NIC 
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Granularity 
!! One often hears the argument – exascale means running bigger, not faster. 

–! This is the classic weak scaling strategy, and it is fine, up to a point. 
 

!! However, larger problems take more steps… run time is in fact longer, even 
under perfect weak scaling. 

!! We are interested in understanding what is setting the limits on strong scaling 
applications, because that sets the limits on speed. 

For time-resolved simulations, number of steps scales as O(n1/3), whether implicit or explicit. 
29 
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Two Run-Time Scenarios 

n  Fully Populated Cluster:  job on every node. 

30 
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n  Supercomputing Center: 
–  Job not using all nodes. 

n Our question: 
–  Why stop at P nodes, 

instead of 2P ?? 

n  Study model Poisson 
problem to get insight. 
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Model Problem:  Poisson with finite differences 

n  Consider complexity estimates for 3D 
Poisson with several iterative solvers. 

n  n/P points on each processor 

uij 

n1/3 

processor p data from neighbor 
allows stencil update  
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Metric for Scalability 
n  P-processor solution time for n points: 

–  T(P,n) = TA(P,n) + TC(P,n),    or       nonoverlapping comm. 

–  T(P,n) = max (TA(P,n) , TC(P,n))      overlapping comm.  
 

n  Seek conditions where communication is subdominant,  TA > TC :  
 

–  TA(P,n)  =  T(1,n) / P  the parallel work 

–  TC(P,n)  the total communication cost = sum tc(m) 
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Linear Communication Model 

1991 

 

      

  1996 

  

2012 

           words  (64-bit)                               

tim
e 

 (s
ec

) 

Linear communication model : 

     tc (m) =  α* + β* m,   m: 64-bit words 

 

Nondimensionalize by ta   [c = a*b] :  
  

 tc (m) =  (α + β m ) ta 
   

 α = α* / ta ,  β = β* / ta 
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25 Years of Nondimensional Machine Parameters 

 YEAR     ta (us)      %         #         %        #         m2      MACHINE              .          
 1986      50.00  5960.   64   119.2    1.3      93     Intel iPSC-1 (286) 
 1987       .333   5960.   64  18060   192      93     Intel iPSC-1/VX 
 1988      10.00   938.   2.8     93.8    .28    335     Intel iPSC-2 (386) 
 1988       .250    938.   2.8     3752     11    335    Intel iPSC-2/VX        
 1990       .100     80.    2.8       800     28       29    Intel iPSC-i860 
 1991       .100     60.    .80       600       8       75    Intel Delta 
 1992       .066     50.    .15       758    2.3     330    Intel Paragon 
 1995       .020     60.    .27     3000     15     200    IBM SP2 (BU96) 
 1996       .016     30.    .02     1800  1.25   1500   ASCI Red 333 
 1998       .006     14.    .06     2300     10     230    SGI Origin 2000 
 1999       .005     20.    .04     4000       8     375    Cray T3E/450 
 2005       .002      4.    .026    2000     13     154    BGL/ANL 
 2008       .0017    4.    .021    2353  12.6    185    BGP/ANL 
 2011       .0007  2.5    .002    3570       3   1190   Cray Xe6 (KTH)  [m2=24] 
 2012       .0010    4.    .005    5000        5  1000   BGQ/ANL 
 
!! m2  :=  % / #  ~  message size " twice cost of single-word message 

!! ta based on matrix-matrix products of order 10—13    

        %        #         m2      MACHINE              .
 1986      50.00  5960.   64   119.2    1.3      93     Intel iPSC-1 (286) 
 1987       .333   5960.   64  18060   192      93     Intel iPSC-1/VX 
 1988      10.00   938.   2.8     93.8    .28    335     Intel iPSC-2 (386) 
 1988       .250    938.   2.8     3752     11    335    Intel iPSC-2/VX        
 1990       .100     80.    2.8       800     28       29    Intel iPSC-i860 
 1991       .100     60.    .80       600       8       75    Intel Delta 
 1992       .066     50.    .15       758    2.3     330    Intel Paragon 
 1995       .020     60.    .27     3000     15     200    IBM SP2 (BU96) 
 1996       .016     30.    .02     1800  1.25   1500   ASCI Red 333 
 1998       .006     14.    .06     2300     10     230    SGI Origin 2000 
 1999       .005     20.    .04     4000       8     375    Cray T3E/450 
 2005       .002      4.    .026    2000     13     154    BGL/ANL 
 2008       .0017    4.    .021    2353  12.6    185    BGP/ANL 
 2011       .0007  2.5    .002    3570       3   1190   Cray Xe6 (KTH)  [m2=24] 
 2012       .0010    4.    .005    5000        5  1000   BGQ/ANL 
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25 Years of Nondimensional Machine Parameters 

 YEAR     ta (us)      %         #         %        #         m2      MACHINE              .          
 1986      50.00  5960.   64   119.2    1.3      93     Intel iPSC-1 (286) 
 1987       .333   5960.   64  18060   192      93     Intel iPSC-1/VX 
 1988      10.00   938.   2.8     93.8    .28    335     Intel iPSC-2 (386) 
 1988       .250    938.   2.8     3752     11    335    Intel iPSC-2/VX        
 1990       .100     80.    2.8       800     28       29    Intel iPSC-i860 
 1991       .100     60.    .80       600       8       75    Intel Delta 
 1992       .066     50.    .15       758    2.3     330    Intel Paragon 
 1995       .020     60.    .27     3000     15     200    IBM SP2 (BU96) 
 1996       .016     30.    .02     1800  1.25   1500   ASCI Red 333 
 1998       .006     14.    .06     2300     10     230    SGI Origin 2000 
 1999       .005     20.    .04     4000       8     375    Cray T3E/450 
 2005       .002      4.    .026    2000     13     154    BGL/ANL 
 2008       .0017    4.    .021    2353  12.6    185    BGP/ANL 
 2011       .0007  2.5    .002    3570       3   1190   Cray Xe6 (KTH)  [m2=24] 
 2012       .0010    4.    .005    5000        5  1000   BGQ/ANL 
 
!! m2  :=  % / #  ~  message size " twice cost of single-word message 

!! ta based on matrix-matrix products of order 10—13    

        %        #         m2      MACHINE              .
 1986      50.00  5960.   64   119.2    1.3      93     Intel iPSC-1 (286) 
 1987       .333   5960.   64  18060   192      93     Intel iPSC-1/VX 
 1988      10.00   938.   2.8     93.8    .28    335     Intel iPSC-2 (386) 
 1988       .250    938.   2.8     3752     11    335    Intel iPSC-2/VX        
 1990       .100     80.    2.8       800     28       29    Intel iPSC-i860 
 1991       .100     60.    .80       600       8       75    Intel Delta 
 1992       .066     50.    .15       758    2.3     330    Intel Paragon 
 1995       .020     60.    .27     3000     15     200    IBM SP2 (BU96) 
 1996       .016     30.    .02     1800  1.25   1500   ASCI Red 333 
 1998       .006     14.    .06     2300     10     230    SGI Origin 2000 
 1999       .005     20.    .04     4000       8     375    Cray T3E/450 
 2005       .002      4.    .026    2000     13     154    BGL/ANL 
 2008       .0017    4.    .021    2353  12.6    185    BGP/ANL 
 2011       .0007  2.5    .002    3570       3   1190   Cray Xe6 (KTH)  [m2=24] 
 2012       .0010    4.    .005    5000        5  1000   BGQ/ANL 

GPU 

GPU 
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Complexity for Jacobi Iteration 

Point Jacobi iteration (7-point stencil):

   

     — Work:         TaJ  ~  14 n/P ta  

  — Communication:    TcJ  ~  ( 6 +  (n/P) 2/3 (1/ m2 )   ) # ta  
   

  — For fixed n/P,  Jacobi complexity is P-independent  
 

  — However, algorithmic scaling  is poor (iteration count scales as n2/3) 

       – a more communication intensive approach is required 

          – conjugate gradient iteration, multigrid, etc. 

 
       – Jacobi is nonetheless a reasonable surrogate for explicit 

         timesteppers 
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Complexity Models for Iterative Solvers 
–  Point Jacobi iteration (7-point stencil, 3D): 

  — Work:          TaJ ~  14 n/P ta  

  — Communication:   TcJ ~  ( 6 +  (n/P) 2/3 (1/ m2 )   ) α ta  

–  Conjugate gradient iteration (7-point stencil):       (alt: Chebyshev iteration) 

  — Work:          TaCG ~  27 n/P ta  

  — Communication:   TcCG ~ TcJ  + 4 log2 P α ta 

–  Geometric Multigrid: 
  — Work:        TaMG ~  50 n/P ta  

  — Communication:   TcMG ~ ( 8 log2 n/P + 30/m2 (n/P)2/3 + 8 log2 P ) α ta 
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Scaling Estimates:  Jacobi 

!!Q:  How large must n/P be for Ta ~ Tc ? 

!! Jacobi scaling is independent of P. 
!! Of course, need occasional all_reduce to check convergence… 
!! Also, not a scalable algorithm (but, similar to explicit timestepper) 

 

BG/P parameters    (BG/Q is similar) 
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Scaling Estimates:  Conjugate Gradients  (I) 

!! The inner-products in CG, which give it its optimality, drive up the 
minimal effective granularity because of the log P scaling of 
all_reduce. 

!! On BG/L, /P, /Q, however, all_reduce is effectively P-independent. 
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Eliminating log P term in CG 
!!On BG/L, /P, /Q, all_reduce is nearly P-independent. 
!! For P=524288, all_reduce(1) is only 4# !'
 

all_reduce 

" ping-pong 

      BG/Q hardware all_reduce 

all_reduce 

P=16 - 524288 

" ping-pong 

      BG/Q software all_reduce 

Message size m (64-bit words)                                  Message size m (64-bit words) 
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Eliminating log P term in CG 

!! On BG/L, /P, /Q, CG is effectively P-independent because 
of hardware supported all_reduce. 

!! In this (admittedly simple) exascale model, net result is a 
10x improvement in granularity  (n/P=1200 vs. 12,000). 

" 10x faster run, but no reduction in power consumption. 

2 x 4 
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Scaling Estimates:  Multigrid   

!! In this case, granularity is relatively high because of the 8 log2 P  
term, which is associated with the coarse solve in MG. 

!! Replacing 8 % log2 P  with 16%  yields  n / P ~ 9000, which is > 2x 
gain in scalability. 

 

 Such gains could be realized through hardware support in the 
 network interface card (NIC) for scan / reduce operations. 

  Further savings might be possible by reducing the first term.   
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Measured and Modeled Multigrid Performance 
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Measured and Modeled Multigrid Performance 

TA = TC 
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Scaling Estimates:  Multigrid   

#! Replacing 8 % log2 P  with 16%  yields  n / P ~ 9000, which is > 2x 
gain in scalability. 

 Such gains could be realized through hardware support in the 
 network interface card (NIC) for scan / reduce operation 

#! Some vendors are already moving in this direction (yay). 

#! Further savings might be possible by reducing the first term.  
(Algortihmic issues addressed by Bell, Dalton, Olson, 2013.)  

     This is an excellent co-design opportunity.   
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What About Accelerators? 

46 
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What About Accelerators 
!!A combined strong-scale / weak scale study: 

– Weak scaling – horizontal lines 
– Strong scaling – vertical lines 

–! Weak scaling sustained to all nodes on Titan 
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NekCEM + OpenACC 
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!!OpenACC variant sustaing 2.5x 16-core MPI version. 
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Disconcerting Observation 

!!The P=1 case rolls over before communication effects kick in. 
!!n/P is limited to be > 125,000 to get peak performance per 

node (this is for electromagnetics, CFD is higher). 
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GPU Performance Scaling:   N=14 
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!! Strong-scale limit:   n/P so small that  ! " 0 

! Granularity limit:     one spectral element per rank 

! Here, we see that the GPU hits min (n/P) because n1/2 is large   $

! GPU version is still faster than CPU  (and better in power by 2.5 x!)

9
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Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 7.
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Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

10 seconds, corresponding to E/P = 32. A corresponding
strong-scale CPU run could effectively use 32 cores, for a
run-time of ⇠8 seconds. We note, however, that 2 GPUs
would also yield ⇠8 seconds run-time, so the choice between
using 32 CPU cores or 2 GPUs would be dictated by the
question of power consumption. It is clear that running with
2 GPUs would require a factor of about (8 second/10 second)
⇥ (2 GPU / 1 GPU ) = 1.6 increase in power over the single
GPU case.

In summary, the GPU performance is impressive in that
it is equivalent to somewhere between 16 and 32 CPU
cores. However, the relatively large vector lengths required
to get high performance prevent the GPU from delivering a
time to solution that dominates the multi-CPU case, which
continues to demonstrate strong scaling (and, thus, potential
for still finer granularity) for this class of problems. For this
particular point in the architecture/algorithm/implementation
space, the all-GPU and all-CPU models are nearly on par
with respect to shortest possible run-time, so that the choice
must be determined by power considerations.

Our scaling studies show good performance at large scale,
using up to 16,384 GPUs on Titan. Figure 5 shows weak
and strong scalings with GPUDirect for the data sizes of
3.3 million and up to 6.9 billions that are at the above of
the strong-scale limits so that the timings for n/P = 500 ·
153, 250 · 153, and 125 · 153 decrease with 87% and 73%
strong-scale efficiency as the numbers of GPUs are increased
by twofold and fourfold, respectively, on each strong-scale
line. The horizontal dots shows ⇠80% weak-scale efficiency

Figure 5. Timings on different number of GPUs for 1000
timestep runs with n=E(N + 1)3, varying E with N=14.

from 8 GPUs to 16,384 GPUs. Figure 6 shows timings of
GPU runs for the case of n/P = 125 · 153 from Figure 5,
in comparison to those of CPU runs, up to 16,384 nodes
(262,144 CPU cores). The computation timings on GPU for
both GPUDirect and GPUDirect-disabled cases demonstrate
2.5⇥ speedup, compared to those on CPU, shown as the solid
lines in Figure 6. We note that the total computation timings
on GPU with GPUDirect are faster only by 10%⇠15% of
those on GPU with GPUDirect disabled.

Prepared using sagej.cls
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GPU Performance Scaling:  N=7 
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!! Here, we have fewer points per element, so CPU version can be 
driven to smaller (n/P). 

! At this point, it is faster than the GPU version, which suffers from 
large n1/2 

!!GPU now also exhibits some communication overhead. 

9
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Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 7.
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Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

10 seconds, corresponding to E/P = 32. A corresponding
strong-scale CPU run could effectively use 32 cores, for a
run-time of ⇠8 seconds. We note, however, that 2 GPUs
would also yield ⇠8 seconds run-time, so the choice between
using 32 CPU cores or 2 GPUs would be dictated by the
question of power consumption. It is clear that running with
2 GPUs would require a factor of about (8 second/10 second)
⇥ (2 GPU / 1 GPU ) = 1.6 increase in power over the single
GPU case.

In summary, the GPU performance is impressive in that
it is equivalent to somewhere between 16 and 32 CPU
cores. However, the relatively large vector lengths required
to get high performance prevent the GPU from delivering a
time to solution that dominates the multi-CPU case, which
continues to demonstrate strong scaling (and, thus, potential
for still finer granularity) for this class of problems. For this
particular point in the architecture/algorithm/implementation
space, the all-GPU and all-CPU models are nearly on par
with respect to shortest possible run-time, so that the choice
must be determined by power considerations.

Our scaling studies show good performance at large scale,
using up to 16,384 GPUs on Titan. Figure 5 shows weak
and strong scalings with GPUDirect for the data sizes of
3.3 million and up to 6.9 billions that are at the above of
the strong-scale limits so that the timings for n/P = 500 ·
153, 250 · 153, and 125 · 153 decrease with 87% and 73%
strong-scale efficiency as the numbers of GPUs are increased
by twofold and fourfold, respectively, on each strong-scale
line. The horizontal dots shows ⇠80% weak-scale efficiency

Figure 5. Timings on different number of GPUs for 1000
timestep runs with n=E(N + 1)3, varying E with N=14.

from 8 GPUs to 16,384 GPUs. Figure 6 shows timings of
GPU runs for the case of n/P = 125 · 153 from Figure 5,
in comparison to those of CPU runs, up to 16,384 nodes
(262,144 CPU cores). The computation timings on GPU for
both GPUDirect and GPUDirect-disabled cases demonstrate
2.5⇥ speedup, compared to those on CPU, shown as the solid
lines in Figure 6. We note that the total computation timings
on GPU with GPUDirect are faster only by 10%⇠15% of
those on GPU with GPUDirect disabled.

Prepared using sagej.cls



Argonne National 
Laboratory 

Disconcerting Observation 

!!When I pressed the vendor, I was told – exascale means 
“Think Big” 

!!But that’s clearly not the road to speed 
– Note, if you double P and reduce time to solution by ", the power 

consumption is constant.    
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n1/2 – an old concern important for exascale 

53 
Supercomputers and Their Performance in Computational Fluid Dynamics,  Kozo Fujii, Springer 1993.  
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n1/2  Requirements for a Candidate Node to Yield Speedup 
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• Requirements on n 1
2
for a candidate node to yield speed-up:

SP = ⌘ · S1 · P (speed, in mflops)

S1 = observed saturated speed, in flops, n � 1

• Let n be total problem size (gridpoints, say), and n 1
2
be the

local problem size such that

S1(n 1
2
) =

1

2

S1(n
sat

)

• Let W := w · n be the total number of flops and

w be the number of flops per gridpoint.

• Choose P = n/n 1
2

(50% e�ciency)

• Time to solution: TP =

w · n
SP

=

w · n
⌘S1P

=

w · n
⌘S1(n/n 1

2
)

=

w · n 1
2

1
2S1

= 2w

✓
n 1

2

S1

◆

1
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n1/2  Requirements for a Candidate Node to Yield Speedup 

n  In addition to internode latency and S1, we need to ensure that vendors 
are paying attention to n1/2. 

–  They have little reason to do so for, say, clusters, workstations, etc. 
but it is imperative for HPC architectures. 
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Breaking the Tyranny of Timescales 
n  Some Examples: 

–  Pipe flow – L, D,  transition ~ D not L >> D  (particularly with roughness) 
• Hydro convergence on short timescale, D/U 
• Heat transfer, however, is often L/U 
–  One idea is to use surrogate hydro simulations as advecting 

velocity field (works for “one-way” coupling). 

–  Turbulence – 
• Can we move to ensemble averages instead of long-time averages? 

• How would we initialize (say) 50 instantiations such that: 
–  Appropriately distinct 
–  Avoid long wait for each initial transient to decay 

 (weather community has done work in this area…) 

–  More physics, etc. 
56 
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Summary 
n  Part I: 

–  High-order and multilevel solvers for turbulent DNS / LES are certainly viable 
ways to make performance gains. 

n  Part II: 
–  Reducing turn-around time in post-frequency-scaling era is challenging, 

particularly under tight power budgets. 

–  Strong scaling is central to HPC.  
•  As a community, we need to police ourselves by presenting strong-scaling 

studies, rather than weak-scale. 

–  Relegating more complex tasks (e.g. parallel prefix support) to the NIC could be 
of value. 

–  Paying close attention to reduced n1/2 on multicore/GPU nodes might pay more 
dividends than increased peak, because one then gets the multiplicative effect of 
increasing P. 

 

–  Hope on the horizon: 
•  Alternative modeling approaches (ensemble averaging, etc.) 
•  PIM (processor in memory) architectures:    

 low computational intensity of PDE-based solvers. 
•  etc. 57 
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Thank You! 

58 


