Path to high-order unstructured-grid

exascale CFD

Paul Fischer
University of lllinois, CS & MechSE
Argonne National Laboratory, MCS

Katherine Heisey
Stefan Kerkemeier
James Lottes

Oana Marin

Elia Merzari

Misun Min

Aleks Obabko

Philipp Schlatter
Martin Schmitt
Ananias Tomboulides
Active users group (> 250)

Turbulence in a heat-exchanger inlet.



Industrial Example

B 12 hour turnaround for result on the left:
— 6 hours to mesh, 6 hours to run on 16K cores
® 3 Days for result on the right (mostly meshing...)
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WPart 1:
e Target Problems

* Where we are today

M Part 2: Strong Scaling and Exascale Algorithm/
Architecture Considerations

* Internode latency
*n,, onh node architectures

B Summary



Incompressible Navier-Stokes Equations
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B Key algorithmic / architectural issues:

— Unsteady evolution implies many timesteps, significant reuse of
preconditioners, data partitioning, etc.

— div u =0 implies long-range global coupling at each timestep
—> iterative solvers

communication intensive
(comes from multiscale math — not physics directly)

— Small dissipation = large number of scales - large number of
gridpoints for high Reynolds number Re



Navier-Stokes Time Advancement
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B Nonlinear term: explicit
— k th-order backward difference formula / extrapolation (4 =2 or 3)
— k th-order characteristics (Pironneau ’ 82, MPR ‘90)

M Linear Stokes problem: pressure/viscous decoupling:
— 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond.CG)
— Poisson equation for pressure (computationally dominant)



Some Turbulence Examples

Optimizing Heat Transfer with
Wire-Coil Inserts J. Collins, ANL

Heat Tras
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Major Difference in Jet Behavior for Minor
Design Change

Simulation Results:

— Small perturbation
yields O(1) change in
Jet behavior

MAX1 —~—_

— Unstable jet, with low-
frequency (20 — 30 s)
oscillations

— Visualization shows
change due to jet/
cross-flow interaction

MAX2 —

— MAX2 results NOT
predicted by steady
RANS (URANS ok)




Tangential Velocity
(symmetry plane)

hows clear wave
pattern

10% drag 3 # Short pipe (2D)
B DNS results are being used reduction! 0 Long pipe
to calibrate new RANS -1951
models in commercial % o Experiment
engineering codes. S o,
-2.05 T
Re=3400
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DNS of Flow around a NACA4412 Wing Profile

Armin Hosseini et al. (KTH)

e ML

B Re, =400,000 with 5* angle of attack. .4
® 3.2 billion gridpoints il et

Ho a, R,, Schilatter, P., Hanifi, A. and Henningson, D. S.: Direct numerical simulation of the flow

arou ection at moderate Reynolds numbers. In 15th European Turbulence Conference, 25-28 August,2015,
Delft. The Netherlands.



DNS of Flow around a NACA4412 Wing Profile

Armin Hosseini et al. (KTH)

B Formation of hairpin vortices(top),
followed by breakdown (right)

B Flow tripped at 10% cord, similar to wind-
tunnel experiments



DNS For I.C. Engine Analysis M. Schmitt, ETH Zurich, 2014

Goals: - cycle-to-cycle var. ,
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Very good agreement for all
available experimental data!
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Compression: Significant Increase in Range of Scales at TDC
— M. Schmitt, ETHZ 2014

Impacts thermal boundary layer, initial conditions for ignition.
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A Sobering Fact: We Are Not Running Faster

Panda Thermal Stratification Benchmark
(Obabko, Tomboulides, Aithal, Merzari, F. 2014)

Low density jet entering stratified background
Very long time integrations

— 1 month of wall clock time
— 2 minutes of physics

— Desire 2 hours > 5 years wall-clock time on 8K cores.

— Nek5000
— E=190,000 elements
- N=7
— n~EN3=62 million
— P =16384 MPI ranks
e n/P~3000

For straight hydro, cannot further reduce n/P
—  Topic of this talk

DB: pab2a.nek5000
Cycle: 2000

L
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A Computational Quandary

® We are not running faster

— Clock speeds are fixed at ~ 1 — 4 GHz for past 10 years
— Power concerns favor reduced clock speeds and more parallelism.

— Communication costs limit granularity to be relatively coarse.

B \What can we do?

— High-Order 10 X 10 X
— Scalable solvers 10 x 10 x
— Lower communication costs 10 x 1 X

— Lower n,,, on accelerators
— Processor-in-memory (PIMs)



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow propagation of
small features (size A) over distances L >>1|. If speed ~ 1, thent; , ~ L/ A

— Dispersion errors accumulate linearly with time:

~|correct speed — numerical speed| * t (for each wavenumber)

>errofy .., ~ (L/A) ™| numerical dispersion error |

— For fixed final error &, require: numerical dispersion error ~ (A /L)€, << 1.

High-order methods can efficiently deliver small dispersion errors.
(Kreiss & Oliger 72, Gottlieb et al. 2007)



High-Order Spatial Discretizations

Example: Spectral element method (Patera 84, Maday & Patera 89)

— Variational method, similar to FEM, using GL quadrature.

— Domain partitioned into E high-order hexahedral elements

— Trial and test functions represented as Nth-order tensor-product
polynomials within each element. (N~ 4 -- 15, typ.)

e n ~ EN’ gridpoints in 3D
e Fast operator evaluation: O(n) storage, O(nN) work

— Converges exponentially fast with N for smooth solutions.

2D basis function, N=10




Spectral Element Convergence: Exponential with N

Exact Navier-Stokes Solution (Kovazsnay ‘48)

d 4 orders-of-magnitude

error reduction when @t

doubling the resolution in

[[v=vull .1
. . —_— ¥ H-oyqe|
each direction [Vl

\\\W?// Y]

4
4 5 6 7 8 g o 11 12 13 14

Jd For a given error, v
A Reduced number of gridpoints v, = 1l—e

B

T cos 2my

A
_E)m:
2

1 Reduced data movement. \ .. Re \IREQ
— 2 T\ 4

aQ Reduced memory footprint. vy = sin 27y

+ 42



Excellent transport properties, even for non-smooth solutions
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Initial Condition K, =16, N=2

Convection of non-smooth data on a 32x32 grid.

cf. Gottlieb & Orszag 77
(K, x K, spectral elements of order N). ( 977)



Impact of Order on Costs

 To leading order, cost scales as number of gridpoints, regardless of
approximation order.

- Consider Jacobi PCG as an example:
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- Only one operation depends on order—the remaining, memory-bound,
depend on number of gridpoints, n.

J Reducing n is the most effective way to reduce data movement.



Cost vs. Accuracy: Electromagnetics Example
M. Min, ANL

* For SEM, memory scales as number of gridpoints, n.
» Work scales as nN, but is in form of (fast) matrix-matrix products.

CPU time vs. #dofs, varying N.

Error vs. #dofs, varying N
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Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon



Nonlinear Example

Q: Do the benefits in linear

problems carry over to

NREL Channel Flow Study

nonlinear cases?

B Test case: DNS Re, =180 (MKM’99)

Performance

10000

1000

100

wall-clock time (min)

F T T T T LI |
- 312K gridpoints per core

= o——o Nek5000
- ———- ideal
I D_DOpenFOAM

10

B Results:

1 111 I
100
P: # of processors

11 1 II
1000

Sprague et al., 2010

— Nek5000 & OpenFOAM have the same cost per gridpoint



Nonlinear Example: NREL Channel Flow Study

Sprague et al., 2010

B Accuracy: Comparison to several metrics in turbulent DNS, Re_ =180  (MKM’ 99)

Accuracy
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ny: # of points in wall-normal direction

B 7th-order SEM needs an order-of-magnitude fewer points than 2"d-order FV.



Solvers

B For incompressible Navier-Stokes, global communication via a pressure
(Poisson) solve is inescapable.

— This is a classic example of applied mathematics being used to tackle a
problem that is intrinsically multiscale.

B Fast robust Poisson solvers are essential.

B \We use a two-step procedure:

1. Projection: compute best approximation p* from previous time steps
Typically a 2-4X reduction in iteration count per step.
Sometimes need only one iteration per step.

2. Muiltigrid preconditioned CG or GMRES to solve for perturbation
Adp = g'-Ap



Multigrid with Additive Schwarz-Based Smoothing
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(Dryja & Widlund 87, Pahl 93, Lottes & F 05)

S REAZYRer + REAG Ryr
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Schwarz Overlapping Smoother: Local
Poisson problems with homogeneous

Dirichlet boundary conditions.
Fast tensor-product solvers.

* 4ol

Coarse Grid Solve: Poisson problem
using linear finite elements on entire

spectral element mesh, A, (GLOBAL).



Fast Solvers for p-Multigrid

B Schwarz Smoothers: fast diagonalization method (Rice et al. 64, Couzy 95, F.02)

— Exploit local tensor-product structure:
A= U N F N (ST

— Complexity < A p

W p-multigrid schedule:
N: =N
N,=3
N, =1 (coarse-grid solve)

B |Coarse-grid solve: Direct, XX (F. & Tufo 01) — P~100,000 or less
Custom AMG: (Lottes 08/11) — P~10°...10°
Sophisticated communication kernel for AMG
Communication intensive!




Putting At All Together: Subassembly with 217 Wire-Wrapped Pins

— 3 million 7t-order spectral elements (n=1.01 billion)
— 16384-131072 processors of IBM BG/P

— 15 iterations per timestep; 1 sec/step @ P=131072
— Coarse grid solve < 10% run time at P=131072

Strong Scaling
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Scaling to Beyond 1 Million Processes

217 Pin Problem, N=9, E=3e6:

Strong Scaling, 1 Million Processes

10

— 2 billion points

— BGQ —-524288 cores

1 or 2 ranks per core

Reactor Assembly
n=2.0 billion
w / S. Parker, ALCF

— A mixture of CG / multigrid gl

o
(V)
d
(7))
— 60% parallel efficiency at o} \
1 million processes © 4000 pts/core
£
i: 1 process/core —— 2000 ptSIproceSS
— 2000 points/process 2processfcore -

0.1

16384 32768 65536 131072 262144 524288

Number of Cores




Some Exascale Questions

m Will this scaling continue as we move to exascale?
M |s this the best we can do?

B What, exactly, is better, or even good?

— Good node performance
— Strong scaling to large processor counts.

B Strong scaling is ultimately limited by costs that do not
go to zero as n/P->0:

t~c,n/P + ¢, +c, log P

— ¢, ~communication overhead
~ other overhead (memory latency on GPU)

~ Amdahl
— C5 ~ can be mitigated by hardware on the NIC



Granularity

B One often hears the argument — exascale means running bigger, not faster.
— This is the classic weak scaling strategy, and it is fine, up to a point.

B However, larger problems take more steps... run time is in fact longer, even
under perfect weak scaling.

B We are interested in understanding what is setting the limits on strong scaling
applications, because that sets the limits on speed.

For time-resolved simulations, number of steps scales as O(n'’3), whether implicit or explicit.



Two Run-Time Scenarios

O/@ @/@ @/@ @/@
offoljolfo

A A A

B Fully Populated Cluster: job on every node.

B Supercomputing Center:

— Job not using all nodes. O/@ /@q/@ /@m/Q /QA/Q /Q /QO/Q

B Our question: C/GD /@Q/@ /@ /Q /Q \/Q /Q \/Q /Q
— Why stop at P nodes,

instead of 2P ?7? /Q /Q /C> /Q /Q /Q /Q /Q /Q /Q

B Study model Poisson C/Q /Q/Q /Q/Q /Q/Q /Q /QQ/Q

problem to get insight.



Model Problem: Poissonwith finite differences

1 i i B Consider complexity estimates for 3D
—J: O—O \J>——:?.s Poisson with several iterative solvers.
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allows stencil update



Metric for Scalability

B P-processor solution time for n points:
— T(P,n) = TA(P,n) + TC(P,n), or nonoverlapping comm.
— T(P,n) = max (TA(P,n), TC(P,n)) overlapping comm.

B Seek conditions where communication is subdominant, T, > T :
— TA(P,n) = T(1,n)/ P the parallel work

— T¢(P,n) the total communication cost = sum t (m)
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Linear Communication Model

——
'delta' u 1:3
'sp2'u 1:3

'paragon’'u 1:3
'asci_red'u 1:3

'bgp'u 1:3
'bgq'u 1:3

100

1000

words (64-bit)

Linear communication model :

t. (m)= o*+p*m, m: 64-bit words

Nondimensionalize by t, [c =a*b]:
t,(M)= (a+pm)t,

a=a/t,, p=p/t,



25 Years of Nondimensional Machine Parameters

YEAR t (us) o p* a B m, . MACHINE

1986  50.00 5960. 64 |119.2 1.3 93 | Intel iPSC-1 (286)
1987 333 5960. 64 18060 192 93 | Intel IPSC-1/VX
1988 10.00 938. 2.8 | 93.8 .28 335 | Intel iPSC-2 (386)
1988 250 938. 2.8 | 3752 11 335 | Intel iPSC-2/VX
1990 100 80. 2.8 800 28 29| Intel iPSC-i860
1991 100 60. .80 600 8 75| Intel Delta

1992 066 50. .15 758 2.3 330/ Intel Paragon
1995 020 ©60. .27 | 3000 15 200| IBM SP2 (BU96)
1996 016 30. .02 | 1800 1.25 1500, ASCI Red 333
1998 006 14. .06 | 2300 10 230| SGI Origin 2000
1999 005 20. .04 | 4000 8 375| Cray T3E/450
2005 002 4. .026| 2000 13 154| BGL/ANL

2008 0017 4. .021| 2353 12.6 185 | BGP/ANL

2011 .0007 2.5 .002| 3570 3 1190| Cray Xe6 (KTH) [m2=24]
2012 .0010 4. .005| 5000 5 1000 BGQ/ANL

B m, == a/p ~ message size - twice cost of single-word message

B t, based on matrix-matrix products of order 10—13
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Complexity for Jacobi Iteration
. o . . 1
Point Jacobi iteration (7-point stencil): u = —(f; — Z a;u; )
i j#i
— Work: T, ~ 14n/Pt,

— Communication: 7., ~ (6+ (n/P) 3 (I/m,) ) at,
— For fixed n/P, Jacobi complexity is P-independent

— However, algorithmic scaling is poor (iteration count scales as n?3)
— a more communication intensive approach is required

— conjugate gradient iteration, multigrid, etc.

— Jacobi is nonetheless a reasonable surrogate for explicit
timesteppers



Complexity Models for Iterative Solvers

— Point Jacobi iteration (7-point stencil, 3D):

— Work: T,,~ 14n/Pt,
— Communication: T,,~ (6+ (n/P)??(1/m,) ) at,
— Conjugate gradient iteration (7-point stencil): (alt: Chebyshev iteration)
— Work: T, .~ 27n/Pt,
— Communication: T..c~T,, +4log, P at,

— Geometric Multigrid:

— Work: T, c~ 50n/Pt,
— Communication: T.,;~ (8log, n/P + 30/m,(n/P)?? + 8 log, P) at,



Scaling Estimates: Jacobi

B Q: How large must n/P be for T, ~ T, ?

1 2/3
T. _ 6(1 + mQ(n/P) )oz _
Tq 14n/P -
a = 2300 |
8 = 12.6 » BG/P parameters
mo, = 185 )
(n/P) = 2000

- Jacobi scaling is independent of P.
- Of course, need occasional all _reduce to check convergence...
 Also, not a scalable algorithm (but, similar to explicit timestepper)



Scaling Estimates: Conjugate Gradients (I)

. 6 (1 + m%(n/P)2/3 + 41095 P) @ _

T, 27 n/P -

P = 10°, log, P = 20, (n/P) =~ 8500
P = 10° log, P = 30, (n/P) ~ 12000

d The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of
all_reduce.

d On BGI/L, /P, /1Q, however, all_reduce is effectively P-independent.



all_reduce time [zeconds)

Eliminating log P term in CG

® On BGI/L, /P, /Q, all_reduce is nearly P-independent.
B For P=524288, all_reduce(1) is only 4¢x !

BQ/Q Softwarg all_reduce
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0,001 f W
0, 0001
le-05 F
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1=-08
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100000

all_reduce time (seconds)

BG/Q hardware all_reduce

0,01

0,001

0,0001

1605 b

all_reduce

Y2 ping-pong

1e-05

10 00 ooa 1000 100000
Message size m- (614-b|t wor&s)



Eliminating log P term in CG

2x4
6(1 + -L(n/P)2/3 4+ 4a1dg- P
T + 5, (n/P)/2 + 41ggo P o <1
To. 27 n/P -
n/P ~ 1200

d On BG/L, /P, /Q, CG is effectively P-independent because
of hardware supported all _reduce.

d In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

- 10x faster run, but no reduction in power consumption.



Scaling Estimates: Multigrid

. _ (8logan/P + 5 (n/P)?/® + 8logy P)a
To 50n/P =

n/P (P =103) =~ 13,000
n/P (P =10%) ~ 17,000
n/P (P = 10°) =~ 22,000

 In this case, granularity is relatively high because of the 8 log, P
term, which is associated with the coarse solve in MG.

J Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x
gain in scalability.

Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operations.

Further savings might be possible by reducing the first term.



Measured and Modeled Multigrid Performance
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Measured and Modeled Multigrid Performance
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Scaling Estimates: Multigrid

7. (8logzn/P + 22(n/P)?/3 + 81092 P)a .
To 50n/P =

n/P (P =103%) ~ 13,000
n/P (P =10°) ~ 17,000
n/P (P = 10%) =~ 22,000
d Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x
gain in scalability.

Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operation

 Some vendors are already moving in this direction (yay).

O Further savings might be possible by reducing the first term.
(Algortinmic issues addressed by Bell, Dalton, Olson, 2013.)

This is an excellent co-design opportunity.



What About Accelerators?



What About Accelerators

B A combined strong-scale / weak scale study:
— Weak scaling — horizontal lines
— Strong scaling — vertical lines

Timing Runs for titanGPU

«—e GPUl
—e GPU2
«—e GPU4

GPUS

10°

10° 10* 10° 10° 10’
Number of Grid Points (N=14)

— Weak scaling sustained to all nodes on Titan



NekCEM + OpenACC

NekCEM Runtime Comparison

B GPU
600" ' mmmm cpPU 1
B CPU 16

700

500¢

Y 200t

2
= 300¢

2007

100¢

d Tesla (PGI) Maud (PGI) Titan (PGI) Titan (CCE)
K20c K40m K20x K20x
2.0GHz 3.4GHz 2.2GHz 2.2GHz

B OpenACC variant sustaing 2.5x 16-core MPI version.



Disconcerting Observation

B The P=1 case rolls over before communication effects kick in.

M n/P is limited to be > 125,000 to get peak performance per
node (this is for electromagnetics, CFD is higher).

Timing Runs for titanGPU

«—e GPU1
e GPU2
e GPU4
10°} GPUS8

10°

Time (s)

101_

10° ' '
10° 10* 10° 10° 10’
Number of Grid Points (N=14)



GPU Performance Scaling: N=14

+__Timings on Titan GPU (N=14)

10 1*—1mings on Titan CPU (N=14) 1o 0mings on Vesta CPU (N=14)
oo GPU1 e CPU1 e CPU1
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0 0 oo U 0 CPU 16
O 12 ol e 0 12 Hcpuaz
v v o CPU 64 v oo ’
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Figure 4. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)? increased with £ = 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

B Strong-scale limit: n/P so small that n > 0
B Granularity limit:  one spectral element per rank

B Here, we see that the GPU hits min (n/P) because n,, is large ®

B GPU version is still faster than CPU (and better in power by 2.5 x!)



GPU Performance Scaling: N=7

»__Timings on Titan GPU (N=7)

y +__Timings on Titan CPU (N=7)
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Figure 3. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1000 timestep runs with
the number of grid points n = E(N + 1)3 increased with £ = 1,2,4,8,16, 32,64, 128,256, 512,1024,2048 and N = 7.

B Here, we have fewer points per element, so CPU version can be
driven to smaller (n/P).

B At this point, it is faster than the GPU version, which suffers from
large n,,

B GPU now also exhibits some communication overhead.



Disconcerting Observation

® When | pressed the vendor, | was told — exascale means
“Think Big”

M But that’s clearly not the road to speed

— Note, if you double P and reduce time to solution by %2, the power
consumption is constant.

Timing Runs for titanGPU
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n,,— an old concern important for exascale

200 F ————————————————————
1/K=R A.R.
o pPr—————————— e, —————————
N 1
L] S/N + K Table 6 Values for N/, (FORTRAN SAXPY)
FORTRAN
Computer Nyja Peak Performance
| CRAY-1 20 45
N CRAY X-MP 37 101
1/2 CRAY-2 30 99
CYBER 205 238 170
FUJ. VP-100 200 140
FUJ. VP-200 120 190
IBM 3090/VF 34 53
NEC SX-1 30 240
NEC SX-2 80 575

Supercomputers and Their Performance in Computational Fluid Dynamics, Kozo Fujii, Springer 1993.



n,, Requirements for:? Candidate Node to Yield Speedup

Sp = n-S-P (speed, in mflops)
S1 = observed saturated speed, in flops, n > 1

e Let n be total problem size (gridpoints, say), and n 1 be the
local problem size such that

) = %Sl(”sat)

e Let W := w - n be the total number of flops and
w be the number of flops per gridpoint.

e Choose P =n/ni  (50% efficiency)

e Time to solution: Tp = w-no_own
Sp ﬁSlp
w-n w-ni




n,, Requirements for a Candidate Node to Yield Speedup

e Time to solution: Tp = w-no_ wn
Sp 7751P

H In addition to internode latency and S, we need to ensure that vendors
are paying attention to n,,.

— They have little reason to do so for, say, clusters, workstations, etc.
but it is imperative for HPC architectures.



Breaking the Tyranny of Timescales

B Some Examples:
— Pipe flow — L, D, transition ~ D not L >> D (particularly with roughness)
* Hydro convergence on short timescale, D/U
» Heat transfer, however, is often L/U

— One idea is to use surrogate hydro simulations as advecting
velocity field (works for “one-way” coupling).

— Turbulence —
e Can we move to ensemble averages instead of long-time averages?

e How would we initialize (say) 50 instantiations such that:
— Appropriately distinct
— Avoid long wait for each initial transient to decay
(weather community has done work in this area...)

— More physics, etc.



Hm Partl:

Summary

High-order and multilevel solvers for turbulent DNS / LES are certainly viable

ways to make performance gains.

m Partll:

Reducing turn-around time in post-frequency-scaling era is challenging,
particularly under tight power budgets.

Strong scaling is central to HPC.

e As a community, we need to police ourselves by presenting strong-scaling
studies, rather than weak-scale.

Relegating more complex tasks (e.g. parallel prefix support) to the NIC could be
of value.

Paying close attention to reduced n,,, on multicore/GPU nodes might pay more
dividends than increased peak, because one then gets the multiplicative effect of
increasing P.

Hope on the horizon:
 Alternative modeling approaches (ensemble averaging, eftc.)

* PIM (processor in memory) architectures:
low computational intensity of PDE-based solvers.

e efc.
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