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PDE-based multiphysics applications

Many PDE-based applications require high-fidelity simulation of
multi-scale / multi-physics phenomena

@ Combustion @ Fusion @ Astrophysics

@ Atmospheres @ Climate @ Cosmology

Characteristic of these problem areas is that they couple a number of
different physical processes across a range of length and time scales

How can we exploit the structure of these problems in developing
efficient simulation methodology for exascale architectures?

@ What are the characteristics of these type of problems

@ Specialized formulations to reflect relationship between temporal
scales

@ Adaptive mesh refinement for spatially varying resolution
requirements N
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Multiphysics AMR

Algorithmic components
@ Advective transport
@ Diffusive processes

Viscosity

Thermal conductivity

Species transport

Diffusion approximations to radiation

@ Reactions
@ Elliptic constraints

@ Low Mach number constraints
e Self-gravity

AMR applications can be built out of basic components for hyperbolic,
elliptic and parabolic PDEs ,\|
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A combustion example

Spatial Scales
@ Domain: =~ 10 cm
@ Flame thickness: 67 ~ 1 mm
@ Integral scale: ¢; ~2 — 6 mm
Temporal Scales
@ Flame speed O(10%) cm/s
@ Mean Flow: O(10%) cm/s j
@ Acoustic Speed: O(10°%) cm/s Mie Scattering Image

Fast chemical time scales
Exploit mathematical structure to compute more efficiently

@ Low Mach number formulation

~

@ AMR p— m
c ool
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Low Mach number equations

opU

Momentum TS +V-(pUU)=-Va+V-N
Oph - Dpy
‘P ) _ =20y, T
Energy B +V (phU) Dt V-(AVT)+
> V- (hF)
k
Y, .
Species a(gt") + V- (pUY) =V - Fr + mQy
Mass @+V~(pU):O
ot
Equation of state py = p(p, T, Yx) becomes a constraint on the

evolution
Low Mach number system can be advanced at fluid time scale
instead of acoustic time scale but . . .

Requires effective integration techniques for this more complex ;\%
formulaton . e
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Low Mach number constraint — general EOS

Low Mach number model is a system of PDE’s evolving subject to a
constraint given by equation of state

Differentiate the EOS along particle paths

dpo @ _opDT 9p Dyx
a Pa,Y Y=ot or Zayk Dt

An equation for T can be derived form the enthalpy equation by

writing h = h(p, T, Yx). Using this equation and the species equation,

we can rewrite the Lagrangian derivatives in terms of thermodynamic

variables and their spatial derivatives to give

1 dpo

Fipo ot +V-U=H

In open domain pg is constant and this defines a constraint on U. In
closed system average of H defines evolution of py

Use generalization of approaches for incompressible flow to |ntegrate:>| ‘...

low Mach number system S
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Generalized projection formulation

Fractional step scheme (open domains)

@ Advance velocity and thermodynamic variables

@ Specialized advection algorithms
@ Diffusion
@ Stiff reactions

@ Project solution back onto constraint — variable coefficient elliptic PDE, multigrid

Stiff kinetics relative to fluid dynamical time scales

(gr") + V- (pUYy) =V - Fr + mel
(gth) + V- (pUh) =V - (AVT)+ > V- (hFy)
k

Spectral deferred correction
@ Treat processes separately using algorithms appropriate for that process
@ Couple processes iteratively by rewriting system as an integral in time >
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AMR

Block-structured hierarchical grids
@ Amortize irregular work
Each grid patch (2D or 3D)
@ Logically structured, rectangular

@ Refined in space and time by evenly
dividing coarse grid cells

@ Dynamically created/destroyed

0.005 0.01
X

2D adaptive grid hierarchy

sync sync
Subcycling: ‘—" i
@ Advance level ¢, then . Sync %
@ Advance level £ + 1 i
level £ supplies boundary data Lovelo Lovel 1 Lovel 2
@ Synchronize levels £ and £ + 1 eve eve eve ,~\| .
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AMR Synchronization

Coarse grid supplies Dirichlet data as boundary Z
conditions for the fine grids. @ Fine-Fine

. = Physical BC
Errors take the form of flux mismatches at the 4 Co);rse-Fine

coarse/fine interface. |

Design Principles:

@ Define what is meant by the solution on
the grid hierarchy.

@ Identify the errors that result from solving
the equations on each level of the
hierarchy “independently”.

@ Solve correction equation(s) to “fix” the
solution.

@ Correction equations match the structure

- Preserves properties of single-grid
of the process they are correcting. prop g'e-g

algorithm

~
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LSB Emissions Data

kol .
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Post Flame Temperature (K)

NO Production
54% "weak"

12.2% "strong”
Emissions chemistry (15 species
and 58 reactions) — Glarborg

Effective resolution of 4096°
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Compressible astrophysics and cosmology

CASTRO
@ Compressible flow

@ Gray and multigroup
flux-limited diffusion

Nuclear burning

@ Self-gravity Pulsational pair instablity
supernova
Nyx
@ Compressible flow
@ Self-gravity
@ Particle representation of

dark matter

~

@ Expanding universe e : |
Lyman alpha forest §585..
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Low Mach number stratified flow

MAESTRO

@ Low Mach number
astrophysical flows

@ Stratified “atmosphere”

@ General equation of state Subchandra ignition

@ Nuclear reactions

Atmospheric modeling
@ Ideal gas equation of state

@ Replace nuclear reactions
with moisture physics

Cloud formation gzee., U
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Hybrid methods for multiscale problems

Look at systems where physical description changes with scale

. H H H . » e | A e

Example: hybrid fluid / particle algorithms T i o
™4 | byt /‘v e [ 2]
. = \; i (ominame snJgmo mEnE
@ Molecular description — correct but S SPERAETH
expensive R o N el

x [Tk Pe I I
@ Continuum CFD — cheap but doesn't | - /7 et

. . "SH EAEE ha
model correct physics in some e =l
. LRREE B ho™ Sant DS A A < -
reg|0ns Falal x|y F [v]+» Frax K

@ Hybrid — Use different models for the AMR paradigm can be used
physics in different parts of the to construct hybrid algo-

domain rithms.
@ Molecular model only where Key is understanding how
needed different descriptions talk to
@ Cheaper continuum model in the each other =\
bulk of the domain m‘;\ﬂ\m
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Complex geometry

Strategies for complex geometry
@ Curvilinear adaptive grids

@ Multiblock — multiple logically
rectangular grids

e Traditional mapped
multiblock

@ Overset mesh —
Henshaw

@ Embedded boundary (aka
Cartesian grid methods)

@ Immersed interface
algorithms

~
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Embedded boundary methods

@ Geometry treated as tracked
interface in Carteisan grid

@ Bulk of domain is discretized
with standard approaches

@ Straightforward coupling to
AMR

@ Automated grid generation
from CAD descriptions
(CART3D)

o NASA uses this
approach for design
optmization Courtesy of M. Aftosmis and M. Berger

~
A
rereees ‘m
ccs E\
Serkerey Las

John Bell, CCSE Computational Research Division




Implementation

One wants to implement these types of algorithms within a software
framework that supports the development of block-structured AMR
algorithms

@ Represent dynamically changing hierarchical solution
@ Manage error estimation and regridding operations
@ Orchestrate multistep algorithms and synchronization
@ Support for iterative methods for implicit algorithms
There are a number of frameworks that support implementation of these
types of algorithms
We use BoxLib
@ Data structures
@ Operations on those data structures
@ Model for parallelization
See Dubey et al., Journal of Parallel and Distributed Computing, 2014. >
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Hybrid parallelization model

Block-structured AMR admits a natural hybrid parallelization model
@ Coarse-grained

e Distribute grid patches to “nodes”
@ Currently done with MPI

@ Fine-grained

e Use threads to operate on patches
e Currently done with OpenMP
e Some strategies work better than others

AMR maps several large patches to each node — algorithms can
utilize many threads per node

Suggests AMR can be mapped effectively to many-core architectures

Decomposes problem of mapping to an exascale machine

@ Distribute patches to nodes

~

@ Distribute work on patches to thread within node rrree) [l
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AMR Research Issue 1 — Distribute work within a node

Possibly severe NUMA effects on | ; L] Grid
nodes R 8 [ Region
@ Decompose large patches ; ; i Tile
into smaller pieces BEET B !
@ Distribute data to respect
NUMA Issues SMC (In‘tel KNC)
. g0[/@—® tiling
@ For AMR this must be done |z reins
dynamically ol
Strategy — hierarchical tiling N
@ Regional tiles for data T e B E’
distribution ol /o ]
@ Logical tiles for loops L ‘ ‘ ]
1816 32 60 120 180 240
. . Number of Threads N
e Manage working set size f\| A
e Minimize cache hits el
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AMR Research Issue 2 — Distribute patches to nodes

Current data distribution strategy
@ Patches defined by regridding procedure
@ Estimate work based on floating point
@ Algorithm distributes work to nodes to balance estimated load

@ Heuristic knapsack algorithm
@ Space-filling curve

Need more “holistic” data layout strategy
@ Communication costs
@ Network topology
@ Data movement costs to move data
@ Non-uniform machine behavior

Current strategy based on collecting performance data during execution to
guide data distribution

@ Complex multiple objective optimization problem that is hard to

formulate and to solve ,\| .
@ Need for heuristics to guide this process g;eéékw”
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General Math Research Issues

Higher-order discretizations

@ Reduce number of degrees of
freedom

@ Increase floating point intensity
Improved coupling algorithms

@ Higher-order needs improved
coupling strategies for different
processes

@ Traditional splitting approaches are

hard to generalize RNS code
@ Fully coupled leads to difficult
nonlinear systems @ Multicomponent compressible
@ lterative coupling based on spectral reacting Navier-Stokes
deferred corrections @ Fifth order finite volume
Multirate integration strategies @ Fourth-order MLSDC time
@ Don't require all processes to use stepping
same time step @ Multirate treatment of chemistry
@ Hard to generalize conventional ~ R
IMEX approaches ;;T;'?l'\m
@ Fits with SDC framework e
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Common mathematical ideas and software framework

@ General framework for adaptive mesh refinement

@ Basic discretizations for various types of PDEs

@ Able to model problems from a wide range of applications

@ Provides a framework for multiscale simulation

@ Isolates “physics” from implementation details
Research issues

@ Data distribution and load balancing

@ Higher-order discretizations

@ Improved coupling strategies

@ More general approaches for multiscale systems
Research issues we didn’t discuss

@ Embedded UQ

@ Incorporating experimental data to improve predictions N
A
@ Design / optmization c;;\"\m
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