S

Productive Extreme-Scale Computing

via Common Abstract Machine Models, Programming Models,
and Integrated Performance Modeling

Samuel Williams, Brian Van Straalen, Leonid Oliker
Lawrence Berkeley National Laboratory
SWWilliams@lbl.gov

e _ AWRENCE BERKELEY NATIONAL LABORATORY =—n



S

—~ A :
% Abstract Machine Model

L)

» The shared memory multicore era Main Memory
witnessed a graceful evolution of a (cached and coherent)

abstract machine model common to
x86, SPARAC, POWER, and various Cg Cg é ‘
vector processors @ Main Memory

¢ Allows programmers to maintain one (cached and coherent)
(parameterized) model of a machine
from one generation to the next. (((((((((((@

< Unfortunately, the reemergence of

D)

accelerators has resulted in many ad- Resilient Memory
hoc additions to this model _ cached? coherent?
& Each_generatlon of processors Main Memory local stores
redefines the model and how (cached and coherent)
programmers implement and
. v v y task queue

contemplate program execution. < @ QI]ﬁ]IE—

Q

Y

Fast Memory
(not coherent)

eeeeeeeeseessssss _ AWRENCE BERKELEY NATIONAL LABORATORY i



S

—~ A :
% Abstract Machine Model

< Rather than demanding users exploit
additional address spaces or execution
models, we need a common model that
allows specialization or attributes be

applied incrementally... Main Memory

(cached, shared, and coherent)

< memory is cached/coherent by default,
but programmers/compilers can %%%%%éé%
allocate variables or regions that are

private (nOt COherent) or resilient or cores of homogeneous functionality, but heterogeneous performance
fast (near/local) as they see fit.

D)

< code runs on the lightweight cores by
default but can be offloaded to fat
cores that implement the same
functionality for sequential performance

e _ AWRENCE BERKELEY NATIONAL LABORATORY =t



cece] ; Standards-Based

Programming Model

< A common machine model does not imply productive portability
(write code once and be able to simply compile/run it anywhere)

< For that, we need a common programming model...

* needs to be standards-based (e.g. OpenMP)

» single implementation must run (and run correctly) on all machines, but
doesn’t necessarily have to attain optimal performance

=  Within this programming model, researchers could optimize for specific
architectures or microarchitectures
 architecture-specific intrinsics
 parallelism/synchronization constructs, etc...
 blocking for different cache sizes
 selecting different algorithmic parameters
< Failure to provide a common programming model demands we write
different versions for different architectures just to use the machine.

< Some architectures will be deprecated due to programming
challenges rather than performance or cost.

LAWRENCE BERKELEY NATIONAL LABORATORY



S

reveen) ‘Integrated Performance Modeling

A common machine model and programming model may provide
portability and parallel (weak) scalability.

Unfortunately, there are no guarantees on processor efficiency
(performance portability)
To quantify efficiency, one must quantify both

= an upper bound to performance

= and observed performance

As part of SUPER, we are developing an automated Roofline Toolkit
that will provide reasonable performance bounds

Integrated performance monitoring could be used to quantify the
time/data movement associated with each key routine or loop nest.

Programmers may focus their efforts on the regions of code that
dominate the run time and where the observed performance departs
from the Roofline bounds.

LAWRENCE BERKELEY NATIONAL LABORATORY



