
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Productive Extreme-Scale Computing
via Common Abstract Machine Models, Programming Models,

and Integrated Performance Modeling

Samuel Williams, Brian Van Straalen, Leonid Oliker
Lawrence Berkeley National Laboratory

SWWilliams@lbl.gov

1

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  The shared memory multicore era
witnessed a graceful evolution of a
abstract machine model common to
x86, SPARAC, POWER, and various
vector processors

!  Allows programmers to maintain one
(parameterized) model of a machine
from one generation to the next.

!  Unfortunately, the reemergence of
accelerators has resulted in many ad-
hoc additions to this model

!  Each generation of processors
redefines the model and how
programmers implement and
contemplate program execution.

2

Main Memory
(cached and coherent)

CPU acc

Main Memory
(cached and coherent)

CPU
Main Memory
(cached and coherent)

CPU

Fast Memory
(not coherent)

D
M

A

Resilient Memory
cached? coherent?

acc

local stores

task queue

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 3

Main Memory
(cached, shared, and coherent) Fast Variables

Resilient Variables

Private Variables

cores of homogeneous functionality, but heterogeneous performance

!  Rather than demanding users exploit
additional address spaces or execution
models, we need a common model that
allows specialization or attributes be
applied incrementally…

!  memory is cached/coherent by default,
but programmers/compilers can
allocate variables or regions that are
private (not coherent) or resilient or
fast (near/local) as they see fit.

!  code runs on the lightweight cores by
default but can be offloaded to fat
cores that implement the same
functionality for sequential performance

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  A common machine model does not imply productive portability
(write code once and be able to simply compile/run it anywhere)

!  For that, we need a common programming model…
"  needs to be standards-based (e.g. OpenMP)
"  single implementation must run (and run correctly) on all machines, but

doesn’t necessarily have to attain optimal performance
"  Within this programming model, researchers could optimize for specific

architectures or microarchitectures
•  architecture-specific intrinsics
•  parallelism/synchronization constructs, etc…
•  blocking for different cache sizes
•  selecting different algorithmic parameters

!  Failure to provide a common programming model demands we write
different versions for different architectures just to use the machine.

!  Some architectures will be deprecated due to programming
challenges rather than performance or cost.

4

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  A common machine model and programming model may provide
portability and parallel (weak) scalability.

!  Unfortunately, there are no guarantees on processor efficiency
(performance portability)

!  To quantify efficiency, one must quantify both
"  an upper bound to performance
"  and observed performance

!  As part of SUPER, we are developing an automated Roofline Toolkit
that will provide reasonable performance bounds

!  Integrated performance monitoring could be used to quantify the
time/data movement associated with each key routine or loop nest.

!  Programmers may focus their efforts on the regions of code that
dominate the run time and where the observed performance departs
from the Roofline bounds.

5

