
1

Application Code Design Constraints

  Several Axes of Complexity
  Architecture, infrastructure, data layout, interoperability
•  Many moving parts

  Requirements
  Maintainable code with reliable results
  Retain code portability and performance
  Measurable and predictable performance

  The challenges in meeting the requirements;
tension between
  Modularity and performance
  Readable/maintainable code and portability
  Easy adaptability to new and heterogeneous architectures and

complex multi-physics capabilities - Extensibility

2

Why Invest in Code Architecture

  Done right code architecture allows extensibility, capability
addition and branching into new regimes and domains
  Reduces barrier to entry into HPC
  Enables multidisciplinary development

  Current Designs good for fat homogeneous nodes
  Modular structure : APIs that allow for some plug-and-play
  SPMD model – parallelism mostly confined to infrastructure
  One generalized data layout, solvers conform to it as far as possible
•  Performance hit when they don’t

  Why Change
  Loop level OpenMP already breaks the separation between parallel

complexity and the numerics
  The data-structures rely on being coarse-grained, not suitable for

fine-grain parallelism
  There is the cost of bulk synchronous parallelism
•  Hides potential for parallelism

  Auto-tuning is harder to do

3

  Writing from scratch is unlikely to produce reliable
multi-physics codes soon
  Years of production use eliminates both modeling and

implementation bugs
  Lessons about interoperability internalized by the developers
Parallel investment in new codes useful, but for the longer term

  Consensus is emerging about techniques that will help
cope with heterogeneity
  Some form of tiling, eDSLs, runtime task scheduling
  Code architects have to consider infrastructure design choices

that will provide plugs for these techniques
The last generation of code frameworks have converged to very
similar architectures – the solutions for next generation framework
design might do the same

Why Invest in Mature Codes Now

4

Considerations for Architecting

specific
hardware
oblivious
solver

index-free
and close to
functional

memory
access

EDSL/code
transformation

async
scheduling

Parallelism

 Refactor units as interdependent tasks
 register dependences with the abstraction layer
 expose data/operation fusion possibilities

