Improving Software Productivity for
Extreme-scale Systems
with Domain-specific Languages

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@rice.edu

ASCR Workshop on Software Development-time Productivity for Extreme-scale Science January 13, 2014




Productivity Challenges - |

Increasing complexity of extreme-scale architectures

e Cores
—more cores
—varied support for instruction-level parallelism
—more hardware multithreading
—Ilonger vectors
e Memory hierarchies

—more cache levels
—UMA vs. NUMA within and across chips
—multiple memory spaces and flavors

e Heterogeneous cores: performance, MIMD vs. SIMT, ISA
e Accelerators with varied programming models

¢ Increasing scale of parallelism




Productivity Challenges - |l

e Applications for extreme scale systems must be ...

— portable
— applications will outlive multiple generations of HPC systems

— high performance
— essential for extreme-scale simulations to complete in reasonable time

— evolvable
— scientific code must serve as building blocks for multi-layered investigations
support incremental extension of capabilities: new physics, new problem classes

e Mapping sophisticated applications to extreme-scale systems is hard

— development

— integrated science, i.e., multi-physics

— sophisticated methods for scalable high performance, e.g., AMR, multigrid

— difficult mapping: architecture considerations affect algorithms and their expression
— debugging

— sophisticated codes are complex, as is their interplay with architectures

boundary conditions, special cases, race conditions, ...

— scarcity of automated methods for pinpointing and diagnosing problems
— tuning

— measurement, analysis, diagnosis are all difficult at extreme-scale




State of the Art

e MPI+OpenMP+vector intrinsics+CUDA/OpenACC/OpenCL

—express algorithms at a level that is unsuitable for mapping
efficiently to a wide variety of extreme-scale architectures

— CUDA for GPU accelerators vs. OpenMP for multithreaded CPU

—too many decisions about control are already encoded
e Domain-specific languages
—examples
— Tensor Contraction Engine for quantum chemistry
— Liszt for PDE on unstructured meshes
— SPIRAL for discrete linear transforms
— Basic linear algebra compiler (Spampinato & Puschel, CGO ’14)
—open problems
— lack DSLs that support key capabilities for extreme-scale applications
— difficult to develop DSL implementations
— difficult to integrate into full applications for extreme-scale systems
— lack tuning tools for DSL developers and end users




Gaps

Compiler infrastructure for refactoring legacy programs

Compiler infrastructure for parsing, analysis, transformation, and
code generation for domain-specific languages

Framework for leveraging domain knowledge

Transformation building blocks to tailor programs for features of
emerging architectures

—eXxploit strengths: vectors, threads, cache, scratchpad

—avoid weaknesses: low bandwidth, high latency, synchronization

Performance models to help guide code generation

Performance tools to

—identify impediments to code performance and opportunities
—assess effectiveness of DSL compilation strategies
—assess the quality DSL-generated code for an application




