
Resilience is a Software
Engineering Issue

Al Geist
Computer Science and
Math Division Oak Ridge
National Laboratory

DOE ASCR Workshop on
Software Productivity for
eXtreme-scale Science

Washington, DC
January 13-14, 2014

Research supported by the DOE ASCR Office

2 Computer Science and Mathematics Division

Productivity in the Presence of Faults

If the solution is not correct, how does the developer
determine the cause?

In the presence of faults developer must also consider:
Result caused by undetected fault
Result may depend on which nodes affected and type of failure
Fault detected but recovery introduced perturbations
Result looks reasonable but is actually wrong

Result could be caused by bug in the exascale application
Result could be poor V&V on the models and codes
Result could be caused by scalability issues in new algorithms

Resiliency goal is the application running to a correct solution
in a timely and efficient manner despite faults and silent errors

Productivity
Gap:
 Tools that
are fault
tolerant and
fault aware

3 Computer Science and Mathematics Division

Improving Productivity through
Software Engineering for Resilience

Today applications rely on the system hardware and software to
detect and mask faults, leaving the application to deal only with
catastrophic errors, through checkpoint

Productivity Gap: Resilience needs to be engineered into all
levels of the software stack, especially the application

Detection engineered in the application for faults and silent
errors (often the only place a problem can be seen)

Error containment is critical. If an error propagates too widely
in time or space, before detection then recovery becomes
expensive and checkpoints may become corrupted

Recovery strategies engineered into the application to avoid
restarting a million tasks because one failed (often only the
application knows how or if it can run-through an fault)

