
Always be Profiling

Brian Van Straalen,
bvstraalen@lbl.gov

October 8, 2013

Assume you have started your big scientific computing project with a set of algorithms that have
well-characterized performance models. By definition, a code has a performance bug when it does
not achieve that expected performance. We do not consider most numerical results as satisfactory
if they do not give results that conform with our expectation from rigorous analysis. For example,
when we design a finite volume discritization that we claim is second order in space and time, if
upon running a convergence analysis we do not asymptotically approach the number two, then we
have a bug. We write regression tests that look for this property in our programs. More generally,
every function in our programs is enforcing a contract. I have arguments that go in. I state that
changed. I have arguments that can be modified and returned. If a function does not execute the
agreed-upon API, then we say it has a bug. All of us have become accustomed to writing tests to
discover these bugs and for using debuggers and other types of tools to discover them.

A more modern version of software engineering checks for enforcement of the API contract
when the code is executing either in a debug mode or all the time. The code gets robust and
trustworthy through the use of techniques like assert. Most of the mature software projects in the
Department of Energy or other large institutions maintain a large suite of regression tests that are
run periodically on the entire code base to verify that the code still executes to completion and
gets the correct answers. While there is the problem of coverage, there seems to be agreement that
some regression testing is essential.

The same discipline has to be brought to the issue of performance. As mentioned before, we
have things that are called performance bugs. What we have learned from a disciplined approach
to logic and execution bugs is that the sooner you inform the users that they have inserted a bug in
a code base, the easier it is to remedy the problem. Modern revision control systems provide users
with the ability to perform binary search algorithms on their code history to discover which change
introduced which flaw. This has been used to great effect in many developer groups in industry
and the government. What we have been lacking is a disciplined approach to also measuring the
performance of our algorithms compared to the performance models. There are several reasons for
this.

1. Automatic regression systems and leadership class computing facilities do not mesh well with
current technology. The human-in-the-loop nature of using time to run parallel execution
jobs on modern supercomputers makes this impractical.

2. A bigger failure mode is cultural. We place logic and numerical correctness as much greater
priorities than performance. Hence we have a process in our development that says correct

1



code first; then make it run fast. In such a development model, changes to aid in performance
can require complete rewrites of code bases. Part of this is how software development feedback
operates. In a strongly-typed contract checking development mode, a user is rapidly informed
of logical errors in their code. Compilation errors are automatic every time you build the
code. Runtime errors happen the minute your start running the code. And your regular
regression tests will catch it within a day or two. We view the act of performance debugging
as a separate discipline which has its own tool sets.

3. Profilers are complicated to use and tend to require performance specialists to understand.

My view is that performance profiling should be built into every code base at the beginning and
carried on throughout the entire development process. Users should be encouraged to frequently
observe the performance history of their code. There should be performance regression testing
for any major code base and for all important production DOE applications. This can be done
with automatic or manual instrumentation of the code. It can be enforced through a coding
standard. The main characteristics of an always-on profiling system is minimizing the impact of
the performance of the code it’s trying to measure and provide a layered interface to level of detail
from all the way from the novice user to the expert programmer.

One example exists within the Chombo package. ChomboTimers are a set of macros that insert
manual instrumentation performance counters into the code. Users only need to learn four C
macros, and everything else is handled automatically. And the performance overhead is on the order
of 1 to 2 percent. They work on your laptop and on all the major high-performance computing
platforms.

2


