
Component-Based Scientific Application Development [1]
Andy Salinger, SNL

1. OVERVIEW OF COMPONENT-BASED CODE DESIGN
The component-based approach to building application codes involves constructing them from modular
pieces. The crux of this strategy, involves the accumulation of “components” across four classes of
software: libraries, interfaces, software quality tools, and demonstration applications. These form the
foundation for the new codes. The benefits of this approach are numerous, and will be listed in detail
below; however, it should be evident that having a large collection of world-class algorithmic capabilities
as a foundation for attacking new applications gives a large advantage over starting from scratch or
retrofitting a monolithic code that was designed for a different class of problems. Just as compilers,
BLAS, Lapack, and MPI have long been standard external dependencies -- and it is also common to
depend on external linear solvers and meshing tools -- we are extrapolating this trend to include dozens of
algorithmic capabilities that can be generalized into reusable libraries.

The strategy associated with this technical approach requires projects to both leverage and contribute to
a comprehensive set of libraries, interfaces, software quality tools, and demonstration applications. If all
projects used, improved, and grew our software and knowledge bases, the expansion in this “working
capital” that we could bring to bear in attacking new projects and programs would be tremendous. To
make progress in this direction, we need to find an appropriate balance between long-term strategic
opportunities and shorter-term project goals. For example, it would be most beneficial to the strategy, but
not to an individual project, to take the time to componentize an algorithm into a general purpose library.
Staff and project leaders who have an appreciation for the larger strategy can help this process by
recognizing when these competing interests exist. This requires active involvement by management since
our teams, goals, and metrics are predominantly project based.

2. BENEFITS OF THE COMPONENT-BASED STRATEGY
In this section we make the technical case for the assertion above, that the component-based strategy
improves the long-term impact and productivity of our organization.
1. Developing and using libraries: The costs of writing, verifying, maturing, extending, and maintaining

a library is amortized over many projects. Shared support of an algorithmic capability over several
projects allows a critical mass of funding for a subject matter expert to develop deep world-class
expertise in a targeted area. Using an algorithmic library gives the application code broadband access
to the mind and fingers of the subject-matter expert. The sharing of optimized code kernels gives a
scalable avenue to achieving performance portability.

2. Modularity of library-based codes: The use of general-purpose libraries developed externally to an
application code forces the code to take on a more modular design. This makes it more flexible and
extensible in the long run, avoiding the pitfalls of a monolithic code base, and maintaining the agility
to adopt transformational approaches as they get developed.

3. Decreased application code base: By breaking off pieces of an application code into reusable libraries,
there is a smaller code base for application teams to support. Also, the finer-grained modularity of the
application means there will be much cleaner separation of software modules that need protection
(such as export control), and that appropriate for public release.

4. Synchronized development and release: deploying libraries through a common frameworks such as
Trilinos enables unfettered development of more sophisticated capabilities that span multiple
libraries. There are many academic projects that are cutting edge in one dimension – what
distinguishes us is our ability to deliver world-class algorithms across a spectrum of research areas
and incorporate them together in an application solving a real problem of interest. Since the
capabilities will be released together, the impediments of keeping compatibility between separate
frameworks with different release schedules are removed.

 2

5. Abstract interface for delivering multiple capabilities to users: The development of abstract interfaces
around groups of capabilities has been a great step forward in the scalability of the delivery of
capabilities.

6. Shared software tools and processes: For large projects, software quality tools and procedures become
increasingly critical to productivity. Most projects have recognized this, but have engaged in
redundant efforts to grow test infrastructure, configuration management, and source code control. A
separate group with the skill set and interest in software engineering can do this work more
efficiently. Moreover, by sharing software quality tools among projects, it greatly decreases the
learning curve for staff members to join new projects. This improves the agility of our staffing and
mitigates staff fragmentation.

7. Demonstration applications for interoperability: Demonstration applications are crucial for learning,
and then showing, how independent libraries can be used together. All new capabilities need a period
of ripening by (patient) external users to improve the usability and flesh out bugs, unnecessary
dependencies, and issues with memory management.

8. Demonstration applications for scoping libraries: demonstration applications are critical in the
development stage for scoping new libraries. It is common for developers of new libraries to include
capabilities redundant or incompatible with other libraries. Demonstration codes can flesh out the
domain model.

9. Demonstration applications as templates for new codes: New codes can be developed rapidly by
using a similar demonstration application as a template, including software quality tools as well as
source code. With rapid development, we are much more likely to deliver a simulation capability to a
customer while their interest and funding are still active.

10. The “Flywheel Effect” [Collins]: The more projects that contribute to the expansion and maturation
of components, the more momentum the components approach will have. This greatly aids
interdisciplinary research, efficiency, agility, and program development.

3. DRAWBACKS AND CHALLENGES ASSOCIATED WITH THE STRATEGY
There are several challenges associated with a shift towards a more component-based strategy.
1. There is an increase in complexity in the software associated with the expanded use of libraries.

Overall, staff will need improved software engineering and design skills.
2. Projects will have an increased dependence on library developers, who may not be part of the project

and be subject to competing priorities.
3. Componentization can lead to reduced performance due to the need to pass data through additional

interfaces and also because general and portable algorithms may not be able to take advantage of
special structure in a specific problem.

4. RESEARCH AND DEVELOPMENT OPPORTUNITIES
At Sandia, there component-based code design strategy has been demonstrated to be successful. The
metrics have been FTE levels needed to develop a new code, the documented synergies between projects
in software and staff, and the incorporation of transformational analysis (like optimization and UQ) tools
into application codes. Remaining opportunities exist to:

1. Provide standardization of key interfaces to extend beyond the Trilinos data structures. The main
candidate would be the nonlinear model interface that allows for generic implementation of
nonlinear, transient, sensitivity, adjoint, optimization, UQ, multi-physics, and Stochastic-Galerkin
solution and analysis tools around all applications.

2. Perform a new case study of development of a new application, with new metrics. For instance,
comparing the costs of developing a new capability from scratch versus modification of a legacy
code.

[1]	 Excerpts	 from	 SNL	 Tech	 Report:	 SAND2012-‐9339	 of	 the	 same	 title.	

