A Scalable Mesh and Field Data Source
that is both Virtual and Tuneable

Mark C. Miller (LLNL)

Many aspects to HPC Exascale software productivity involve the same key software
engineering issues of any large software project. One aspect that is somewhat
unique to HPC exa-scale software productivity is the need to design, test and debug
code running at the exa-scale. However, apart from having actual compute
resources, a key pre-requisite for being able to run at exa-scale is having exa-scale
sized data to work with.

All code teams inevitably face the problem of needing to test code and algorithms at
scale and having no quality data to work with. They often invest resources to
generate static file sets. But, this can be a large distraction from code development
activities, the resultant file(s) are cumbersome to manage and work only for specific
scale(s) and because the files typically cannot be shared between code teams the
effort is often duplicated.

All code teams could benefit from having a scalable data source that is both virtual
and tuneable.

By “virtual”, we mean the data never exists in file(s) anywhere. Instead it is
generated on-the-fly when the application reads data from the scalable source.
However, the application is completely unaware that it is interacting with anything
other than the same kinds of files it is accustom reading. The applications can
continue to use the same [/0 interfaces to “read” this data as they currently do to
read real files. This is possible by building everything on top of a new kind of
filesystem “device driver” (e.g. an alternative to ext3 or zfs) that effectively “spoofs”
real files with on-the-fly data generation.

By tuneable, we mean the data can be generated in prescribed ways relevant to
testing various aspects of codes at scale. Examples would be ensuring such things as
the size of the mesh assigned to each MPI rank or OpenMP thread, whether the
mesh is continuous, structured, unstructured or adaptive, or that the mesh has
certain defects that mimic real world meshing issues or that a given field on the
mesh has a prescribed gradient or boundary condition, or that the parallel
decomposition and assignment to MPI ranks matches a given communication
topology, etc.

Although meshing is a key capability, in this context the goal is to restrict the set of
available models output by the scalable data source such that meshing part of the
problem is substantially simplified. For example, maybe the initial implementation



serves up only rectangular, spherical or cylindrical models. Nonetheless, in the long
term it may still be possible and useful to employ a meshing code (PMesh may be a
good candidate) to drive the generation of more interesting physical models.

To develop a scalable data source as described here, a few key technologies need to
be combined together. These include

* Filesystem device driver(s): One or more device drivers for each unique
operating system to be supported.

e Simplified Mesher: For restricted set of input models (initially just cubic,
spherical and cylindrical) with later option to support more sophisticated
models with a full-blown meshers such as PMesh or MeshKit.

* Tuning logic: additional logic to ensure prescribed tuning parameters of the
generated output are met

* Tuning Targets Inventory: a survey of various HPC exa-scale codes for
tuneable aspects of mesh and field models necessary to drive codes into
particular testing regimes.

* Byte-Stream Plugins: File byte-stream generator plugins, one for each [/0
interface to be supported, that can emit byte-streams according to the layout
requirements of the I1/0 interfaces such as HDF5, Silo, netCDF or MOAB.

Note that the a scalable data source as described here has application and
implications beyond that of supporting testing of codes at scale.

Such a tool can help spur the development of benchmarks and inter-code
performance comparisons because it enables the identical data to be input to
multiple codes. It helps developers measure and compare code performance
without having it unnecessarily skewed by 1/0 activities. In addition, it can even
help in the testing and benchmarking of real file [/O activities by using the data
generated by the scalable source as an input for driving 1/0 interfaces and
hardware.



