Exposing and Expanding Compiler Technologies to Improve Software
Productivity in Developing Mathematical Libraries and Simulation Codes

Paul Hovland, Barry Smith*, Marc Snir, Lois Curfman Mclnnes
Argonne National Laboratory
[hovland, bsmith, snir,mcinnes]@mcs.anl.gov
* point of contact

Boyana Norris
University of Oregon

norris@cs.uoregon.edu

Motivation. Mathematical libraries and toolkits are the primary mechanism for delivering the fruits of DOE ASCR
mathematics research to DOE scientists, academia, and industry. ASCR is the major provider of open source,
scalable mathematical libraries to the science community and has been extremely successful in this role. However, the
slow development of mathematical software and simulation codes (that is, low productivity) will become a major
bottleneck in extreme-scale simulations due to:

e emerging hybrid computer architectures that have complicated hardware, including accelerators and
co-processors, deep memory hierarchies, scratchpads, processing in/near memory, power management,
resilience management, and

e the need for increasingly complex multiphysics, multiscale, and multicomponent simulations that incorporate
optimization and uncertainty quantification (UQ).

“Old-school” development of numerical software uses a manual, labor-intensive process that cannot meet the
challenges of extreme-scale architectures and simulations. Much of the developer’s time is spent in an ad hoc
process of modifying and extending existing code in order to port to new platforms, support new data types, and
improve performance, instead of focusing on what should be the main task of introducing new functionality. As with
traditional refactoring, these aspects of software evolution cannot be fully automated. Nevertheless, partial
automation can significantly reduce code development time and error rates while improving performance, thus
enhancing productivity. Modern compiler infrastructures such as LLVM and ROSE expose the inner workings of
compilers, making it easier than ever to implement the custom analyses, transformations, and embedded
domain-specific languages (DSLs) required for such partial automation. We are not advocating a single, new,
“better” programming language for HPC, but rather a set of tools that take advantage of high-level mathematical
semantics, such as differentiation and high-order tensor computations, in order to automate much of the code
generation and refactoring that is today done primarily by hand. This will enable developers to focus primarily on
high-level design and algorithmic innovation.

Approach. By using compiler technologies (code analysis, code transformations, code generation, data structure
manipulation, and DSL design) that are based on deep knowledge of algorithms and their mathematical properties, we
can develop higher quality and more powerful numerical software much more efficiently than we have in the past.
Examples of such code transformations include:

e Performance improvement (with no change in code semantics):
o Transforming a data structure that has poor data locality to one with better locality
o Transforming a code to one that can be vectorized
e Semantic code transformations:
o Transforming a code that simulates into a code that also optimizes over the simulation



o Transforming a code that simulates into a code that also incorporates UQ of the simulation
o Determining where lower precision can be used in a code

Our goal is to enable rapid development of high-performance portable numerical software for current and future
systems of any scale. This work requires appropriate investment in three categories of activities developed by
multiple collaborating communities, as represented by the diagram below.

Simulation Mathematical Compiler Tools
Scientists Library and Communit
Community AD Communities Y

7

Provide motivation and feedback

Key emphasis is on the feedback loop to the right, which will lead to the creation of tools supporting code
transformations that are aware of the numerical effects and performance effects of such transformations; the tools will
“understand” data structures (such as arrays, vectors, or tensors) and will understand code as an approximation to
continuous mathematical operators on these objects. This understanding is not merely a convention that drives the
design of methods or templates by programmers, but is embedded in the logic of the transformation tools. Therefore,
their development demands close collaboration among the mathematical library community, the automatic
differentiation (AD) community, and the compiler tools community. Strong connections to scientific applications are
essential to ensure relevance. Research and development needed to expand from AD into broader semantic program
transformations include the following.

e Developing an open source toolkit of “mathematically aware” high-level code transformation technologies
e Using AD and other techniques to characterize the numerical and performance impacts of program
transformations
Developing autotuners that can balance numerical accuracy with performance
Using these tools in the development and support of mathematical libraries for HPC (feedback loop between
compiler tool developers and library writers)
e Developing an open source community around these tools

Traditional compilers and transformation tools operate in a black-box fashion (accepting source code input and
producing object code output without accepting any additional input during the process). This limits their
effectiveness by forcing conservative decisions in the absence of complete information about dependencies or the
specific execution environment at compile time. One way for tools to overcome this limitation is to enable more user
interaction throughout the analysis and transformation process. Another way is to make transformations iterative
(e.g., in performance tuning, capture performance information for the transformed code to inform subsequent
transformations). Finally, transformations should occur at higher levels, based on information provided by library
developers on the equivalence of different data representations and operations.

Impact. Leveraging open, interface-rich compiler technologies and merging these with mathematical knowledge of
algorithmic properties will result in higher quality and more powerful numerical libraries and simulation codes for
DOE. Without these tools, the difficulties of implementing mathematical libraries and simulation codes, which
provide essential intermediate layers of the software stack between lower-level CS capabilities and higher-level
scientific applications, will be the major bottleneck for future extreme-scale DOE simulations.



