
Software Engineering Issues in Moving Legacy Codes to Future
Architectures

Charles R. Ferenbaugh ∗

HPC-1, Scientific Software Engineering
Los Alamos National Laboratory

In 2008, the first petaflop computing cluster, Roadrunner, was deployed at LANL. We spent much effort figuring
out how to rewrite some of our legacy algorithms and codes to run efficiently on this new heterogeneous architecture.
These codes were large, multiphysics codes that had been developed over a period of years or even decades. In
the rewriting process, we identified a number of issues related to software engineering, and made first steps toward
finding solutions to those issues. We describe some of the issues and solution ideas here; they will be relevant as
new architectures are being deployed more widely, and more institutions are dealing with the challenge of legacy code
modernization.

Why Not Just Write New Codes?
First, though, we must address a question that is often asked: why can’t we just write brand-new codes from scratch
to run on the new architectures, and leave the legacy codes behind? This isn’t as easy as it sounds, for several reasons.

To begin with, there are resource constraints. At LANL, as in other places, our legacy codes are already much
needed for ongoing work; these codes would need to be maintained and updated concurrently with new code develop-
ment. Finding the funding to staff two code teams concurrently, in the same area, would be difficult even under normal
budgets; it is likely to be even more challenging as reduced budgets become more common. And, even if funding
were available, it would still be difficult to find two teams of developers with the needed expertise, spanning domain
science, numerical methods, computer science, and software engineering.

In addition, a new code would require a significant amount of verification and validation before being fully usable.
A legacy code has typically undergone years of V&V, both formally and informally. Therefore, it is often treated as
the baseline against which the new code’s results must be understood before the new code can be trusted. But the
details of how the legacy algorithms are implemented, and how they interact when coupled, are often underspecified
and sometimes not explicitly understood. So it’s not easy to replicate the behavior of the legacy code in the new; or, if
the behaviors differ, to understand why and evaluate which is correct.1

For these reasons and others, writing new codes to run on new architectures generally isn’t practical. Instead, we
must incrementally modify the legacy codes, upgrading portions of the code in place while maintaining functionality.

Legacy Code Development and Maintenance
We’ve discovered in recent years that many of our existing code development practices produced code that wasn’t well
suited to new architectures. Our usual coding style, best summarized as “just get the physics working,” led to code that
was difficult to understand and modify. In particular, there was often heavy coupling between the physics algorithms
themselves and the infrastructure needed for performance (memory management, database access, MPI calls, etc.);
this made it hard to change the infrastructure to support new architectures while leaving the physics intact. Also, our
data structures were often designed using the “giant common block” mentality, assuming that all data was accessible
directly from anywhere in the code (even if the implementation didn’t actually use common blocks). This meant that

∗Mailing address: Los Alamos National Laboratory, Mail Stop B295, Los Alamos, NM 87544, USA. Email: cferenba@lanl.gov.
1In one notable instance at LANL, a legacy code and its successor gave significantly different answers on one important problem. The causes of

the difference were identified only after multiple man-years of effort, and in the process several errors were identified in the old code, the new code,
and the problem setup.



the data structures themselves were the interface, so that we couldn’t restructure the data without touching all of the
code that uses it. It also meant that we couldn’t easily determine which data was used where, for purposes of managing
data movement between different memory spaces. We hope that use of modern language features and better software
design techniques will help us address these issues as we move our legacy code bases to the newer architectures.

Similarly, when we considered code maintenance for the new code we were developing, we faced the prospect
of having to maintain distinct versions of large sections of the code for each new architecture we were asked to
support. This would lead to nightmares in trying to maintain consistency between an ever-increasing number of
implementations of similar algorithms. Instead, we hope to minimize this problem and reuse as much code as possible
on new architectures by improving the design of the software, introducing appropriate abstractions, and using advanced
language features such as templating and function inlining.

Testing and Debugging Issues
We’ve also discovered several challenges related to software testing and debugging. Most noticeably, we found that
the increasing amount of concurrency in the new architectures led to non-reproducible results on a scale we had never
experienced before. For many years we had been able to have consistent results as long as the hardware and software
environment remained constant; some variation could occur when hardware, compilers, or library versions changed,
but these changes were infrequent and manageable. On new architectures, however, variations could (and did) easily
occur between one run and the next, in ways that our usual testing processes weren’t designed to handle.

To further complicate matters, we found that many of our legacy algorithms were numerically unstable: the small-
est change to the inputs could lead to large changes in outputs. In some cases this was due to poor implementation,
while in other cases it was actually inherent in the definition of the algorithm. In the past developers did not pay much
attention to this issue, as it wasn’t a problem; the small input changes that exposed it were few and far between. On
new architectures, however, the unstable algorithms would only amplify the frequent small variations described above.
We found that we would need to consider numerical stability in any new code we developed; and worse yet, we would
have to go back through thousands of lines of legacy algorithms to determine their stability as well.

As a consequence of the non-reproducibility and non-stability we discovered, our traditional testing and debugging
methodology (when a problem occurs, create a reproducer, rerun in the debugger, track down the error) would in many
cases be inadequate for future architectures. We’d need to find other ways of eliminating bugs from our code. The
good news was that modern software practice provided a number of possible tools, such as:

• Extensive unit testing, with particular attention to corner cases
• Static and dynamic analysis tools
• Inspection techniques such as code reviews and pair programming

The challenge, then, is to find ways to use practices like these in the modernization effort for our legacy codes.
One particular challenge relates to implementing unit tests and other similar tests in ways that are easy to use. As

we’ve investigated the use of unit test frameworks, we’ve found that many of the common ones are fundamentally
designed to run on serial codes. It’s challenging to make these frameworks test MPI and OpenMP codes effectively, let
alone codes with newer programming models such as function offloading to GPUs and other accelerators. This limits
our ability to rewrite our code using the new models, while still being confident that the new code functions correctly.

What Would Help
We have identified some general ideas that could help us be more productive in moving legacy codes to future archi-
tectures; however, we are still figuring out specifics of how to apply these ideas. Some research areas that could be
helpful are:

• Design patterns and strategies for incremental modernization of large legacy codes
• New code analysis tools to help in understanding legacy code organization
• Testing frameworks that are suited to massively parallel architectures and new programming models
• Code analysis tools and processes to help determine code correctness, as supplements to testing

We hope that there will be opportunities for ongoing research in these areas; and as this happens, we hope that the
scientific software community will share their best practices and lessons learned in their code modernization efforts.

2


