Effective Software Engineering Approaches to Resolving

Scientific Computing’s Productivity Gridlock
Stuart Faulk, Ph.D.

Computer and Information Science

University of Oregon

faulk@cs.uoregon.edu

Supercomputer designers traditionally focus on low-level hardware performance
criteria such as CPU cycle speed, disk bandwidth, and memory latency. The High-
Performance Computing (HPC) community has more recently begun to realize that
escalating hardware performance is, by itself, contributing less and less to real
productivity—the ability to develop and deploy high-performance scientific
computing applications at acceptable time and cost.

In prior work we examined the source and nature of productivity problems in large-
scale scientific programming ([1], [2], and [3]). The results suggest that the
dominant barriers to productivity improvement are in the software processes. The
scientific programming community has evolved its own characteristic software
development approach that, for historical reasons, focuses on code efficiency,
scientific worth, and machine utilization. Our workflow studies have shown that this
approach creates bottlenecks that constrain developers’ ability to improve real
(end-to-end) productivity. Further, these bottlenecks are inherent in the approach,
particularly in its reliance on having multidisciplinary experts (the science, the
code, and the hardware) hand-craft and hand-tune the code.

The software engineering community has developed a number of technologies,
strategies, and methods that have the potential to remove these productivity
bottlenecks. However, these technologies have typically not been adapted to the
rigors and constraints of massively parallel scientific computing. Thus, it is currently
unclear which aspects of software engineering should be used, exactly where they
should be applied, or how the technologies will need to be adapted to address the
problems specific to HPC. For example, the software community has developed a
wide range of software development process models. However, the models that
currently receive the most attention in the literature (i.e., agile methods like Scrum)
are based on assumptions that are inconsistent with the developmental realities of
the HPC community.

Nonetheless, the software engineering community has much to offer scientific
computing. While software engineering has not yet addressed HPC’s specific
bottlenecks, it has addressed a wide range of similar productivity problems in many
problem domains, and across all aspects of development. Thus, while the current
focus on agile processes may not help, there exists a broad capability in modeling
software development processes, process measurement, process improvement, and
other results that can be brought to bear to model, measure and improve processes



used in scientific computing. Some of the most promising areas of collaboration
include [2]:

* Automation - increased automation of labor-intensive tasks, particularly
parallelization, data allocation, and latency management.

* Abstraction - the expertise bottleneck arises directly from the need to
maintain concurrent expertise in multiple distinct disciplines. This
bottleneck can be reduced to the extent scientists are able to think and code
in problem-level abstractions (as opposed to machine-specific codes). While
appropriate abstractions are lacking, the software engineering community
has a deep background in creating such abstractions in a variety of problem
domains.

* Measurement - many of the traditional HPC metrics (e.g., machine utilization,
throughput, latency, etc.) do not measure the qualities critical to end-to-end
productivity. Process and other productivity metrics developed in the
software engineering community, along with continuous process
improvement, will be key to improving HPC processes.

My own work has more specifically focused on the development and reuse of critical
problem abstractions in a way that allows the reuse of substantial parts of design,
code, and other development artifacts. In non-HPC systems such contextual reuse
has been shown to improve productivity (fairly routinely) by a factor of 3X to 8X. A
wide range of processes, methods and models has been developed for the
engineering of such software product lines (e.g., [4]. Our experience with other
difficult problems (e.g., small, hard-real-time avionics) suggests that many of these
results might be repurposed for application in the scientific programming context.
However, significant work must be done to develop HPC-appropriate abstractions,
demonstrate their efficacy on problems of real scientific value, and collaborate with
the scientific computing community to achieve useful technology transference.

References

1. M. Van De Vanter, A. Wood, C. Vick, S. Faulk, S. Squires, and L. Votta, Productive
Petascale Computing: Requirements, Hardware, and Software, tech. report TR-2009-
183, Sun Microsystems, 2009.

2. S.Faulk, E. Loh, S. Squires, M. Van De Vanter, and L Votta, “Scientific
Computing’s Productivity Gridlock: How Software Engineering Can Help”,
Computing in Science and Engineering, pp. 30-39, November/December 2009.

3. S.Faulk,J. Gustafson, P. Johnson, A. Porter, W. Tischy, and L. Votta, "Measuring
HPCS Productivity," International Journal of High Performance Computing and
Applications: Special Issue on HPC Productivity (editor: Kepner), Volume 18,
Number 4, Winter 2004 (November).

4. D. Weiss, R. Lai Software Product-Line Engineering: a Family-Based Software
Development Process, Addison Wesley, 1999, ISBN 0-201-69438-7.



