
Preparing Mature Codes for Generations of Heterogeneity

A. Dubey

October 7, 2013

Abstract

In the era of cluster computing coarse grain parallelism and bulk synchronization
balanced the need for portable performance with programming complexity. On future
platforms this model is inadequate, but there is no convergence on any alternative
model that might be. However there is emerging consensus about the necessity for
using asynchronous task management and code transformation/auto-tuning for future
code performance. This knowledge can be used as a basis for re-factoring of data layout
and infrastructure of large codes with many moving parts so that there are footholds
for using these abstractions. There is an urgent need to begin these transformations
now to have a chance of being ready when the more heterogeneous and/or manycore
machines come online.

In the era of cluster computing with fat nodes, distributed memory computing provided
a near ideal programming model that could balance the conflicting requirements of per-
formance, portability and maintainability. The overheads of communication primitives and
bulk synchronizations could be amortized over large computational units to the point where
they did not significantly compromise performance. Also, since the node architectures were
mostly homogeneous even across vendors, general algorithmic or data structure optimiza-
tions provided benefits across the board. Many such codes are in production in multiple
disciplines, are prolific in producing scientific results, and are likely to continue to do so for
the next couple of years. This state of affairs combined with the uncertainty in the HPC
landscape at present has induced hesitancy in prioritizing the infrastructure refactoring in
most large code projects and their funding agencies. We believe that this could potentially
be a recipe for disaster as more heterogeneous and less reliable machines come online.

The most frequently given argument that the code developers will rewrite their codes
for the target platforms is valid only for software with relatively small code bases. When
the algorithms are well understood, and refactoring the code is likely to take only a few
person-months there is nothing to be gained by anticipating trouble and preparing for it
ahead of time. However, the majority users of extreme scale platforms of future are likely
to be multiscale multiphysics applications. Such applications by their nature require large
complex codes with many moving parts. They are also likely to take several person-years
to transform the whole code base. Our experience indicates that bugs get eliminated from
the code over several years of production use, therefore writing such a code from scratch
is unlikely to produce reliable code any faster. Building, maintaining and orchestrating
such codes has been challenging in the past, and their utilization of HPC resources has

1



always been a balancing act between portability and performance. Increasing heterogeneity
has moved this beyond a balancing act to a question of whether the codes will be able to
effectively use future HPC resources at all.

Many efforts are underway to develop programming models and tools to help scientific
software development. That may be a good solution for the far future because new technolo-
gies take time to mature. What often gets overlooked in the discussion is that the present
code base is already facing heterogeneity and hyper-parallelism. Therefore It is our position
that redesign and re-architecting of code frameworks should begin now, especially because
a consensus is beginning to emerge about the conceptual design requirements that, if met,
could produce codes that will work on several generations of heterogeneous platforms and
also be able to exploit the emerging technologies without significant rewriting.

The emerging paradigms for taking the codes to the next generation include automatic
code transformation and asynchronous runtime management. While the individual tools
and compilers for providing these functionality will be different, the applications will have
to provide footholds for the related abstractions. It is known that fine-grain parallelism
could impose data and housekeeping overheads, therefore constraints on the location of
data and operations on it have to be relaxed so that auto-tuning tools can rearrange them
as needed. Similarly, it is known that bulk synchronous processing makes the worst use of
the network, imposes the harshest performance penalties on algorithms and may not scale
at all. Therefore in addition to relaxing control on where data resides and who executes it,
we also have to relax constraints on when a task executes. The applications can do so by
taking the separation of concerns a step further than they already do, that of separating
numerical and parallel complexity. They have to leave data-staging and assembly to the
infrastructure and expose minimum computation units, both spatial and temporal, that can
be exploited by the code transformation tools through fusion. The applications also have to
explicitly articulate the dependencies within the code to plug in dynamic task scheduling.

Because of the above considerations, the re-factorization and transformations are needed
at the more fundamental implementation design level in the application codes and/or their
infrastructure. The data layout, the wrapper layers and the communication channels be-
tween different code components have to be designed with an awareness of the semantics
of the programming abstractions using asynchronous task management and code transfor-
mations. Such re-factoring of codes is also likely to pay dividends in other ways such as
reliability and resiliency of the code. It is imperative that support is provided for refac-
toring of the mature codes in this manner because the changes to the architecture of most
codes will be highly disruptive and therefore labor intensive. The alternative, code devel-
opment from scratch, might succeed in a few instances, but is unlikely to meet with broad
success. The reasons are: (1) an unconstrained design space has a potential to not con-
verge, as happened to many high level frameworks 12-15 years ago, (2) code verification
during refactoring remains tractable when solutions can be compared against a known set
of solvers, and (3) to build a robust multiphysics code is long and arduous process, most
mature codes have taken 5-8 years to arrive at the level of confidence that they now enjoy.
We believe a judicious combination of disruptive and incremental changes are the optimal
way to continue to serve the cause of science.

2


