
 -1-

New software technology and its relation to application lifecycle
John R. Cary (Tech-X and the University of Colorado)

From computational research to computational science applications
The large barrier to using the results of recent computational research has been noted many times
before. The goal of this white paper is to discuss what sorts of computational research results
can be used within a project at which times.
Project initiation
There is nothing better than the green field for unleashing one’s imagination. Everything is on
the table. So this is the time when one can introduce

• A new language (Java, Haskell, Lua, Scala). Of all of these, the only one to get significant
acceptance was C++.

• Invasive, ubiquitous data structures, i.e., those that must be used throughout the
application.

• A revolutionary methodology (distributed memory computing)
But now let’s look at the opportunities. In the ComPASS project (now just HEP, but also NP
and BES at one time) one has the computational applications, Vorpal, Osiris, Warp, Ace3p,
Synergia. Of these only Synergia was (likely) started within the last decade. The origin of Warp
is more than two decades ago. So there are perhaps two new codes (new opportunities) per
decade per subfield of physics. But, some of these computational accelerator physics are also
used in plasma physics (FES). So there are maybe less than two opportunities per decade per
subfield of physics. A subfield corresponds to a Division in the American Physical Society, of
which there are of order 15, so perhaps that is not so bad, a few opportunities each year in
physics. In chemistry and biology, being less universally mathematical sciences, I would guess
there are fewer opportunities.
But to someone starting a new code, building it on a new technology is very risky. History is
littered with computational research projects that were discontinued (POOMA, numerical Java,
…) or have been insufficiently used. This is not a criticism, as research is about trying stuff out.
But it should not be expected that computational scientists will easily try out the products of
computational research projects. It is typically 4-5 years from the initiation of a new
computational application to the first scientific paper from its use. Picking the wrong technology
at the outset will lead to the waste of something like 1/6 of the career of a computational
scientist. So before that will be done, the computational scientist has to have developed a large
degree of confidence in the technology, and that in itself may mean some years of experience
with it.
In fact, one of the more successful technologies (Global Arrays) was developed originally within
a project, NWChem. It was subsequently adopted by other chemistry codes, but its adoption
outside that field is small. So getting in on the ground floor of a new application is one way to
make sure one’s work is relevant.
Distributed memory computing was an absolute revolution. Practically no codes that existed
prior to distributed memory computing were migrated to effective use of distributed memory
computing. However, distributed memory methods were the only way to take advantage of the
new computing architectures, so they were not only adopted (shmem, PVM) but eventually
standardized (MPI). And for the latter, it was a multi-year painful process involving all
stakeholders. It was not just a brilliant idea. But in the end, the writing of new applications was
forced.
Lessons: Research aimed at new languages and data structures has a very high barrier to
adoption. Work with the application developers on new data structures. Revolutions are
successful only if they are necessary.

 -2-

Refactoring
The lifetimes of successful codes are in the range of 2-3 decades. But codes get refactored every
2-3 years. Hence, there is 10x as much opportunity for computer science research to be
influential if it can be done in a refactoring campaign. At this point one can introduce

• Inner loop optimization
• Compiler directives, including those that might measure performance
• Use of a new library
• Incorporation of new algorithms

This is likely the sweet spot for computational research, as there is a chance for wide adoption,
with the continuous refactoring that is going on. However, for adoption, the new technology
must be something that can be integrated into an existing framework. It cannot be a new
framework. Moreover, for most of these, one needs to understand what the application needs.
The Science Application Partnerships were very good for this.
Continuously
In the lifetime of all applications, ancillary software is needed to get answers out. Most of these
things are items that exist outside of the main application. So in this category are

1. Visualization
2. Data analysis
3. Build systems
4. Package management systems
5. Workflow systems
6. Testing
7. Debugging

The third and fourth items are critical but not considered very sexy, and so computational
scientists have often ended up building their own systems. For example, at Tech-X we
developed Bilder (http://sourceforge.net/bilder) as a package manager that handle multiple
packages with multiple build systems, and that works on LCFs. While we have adopted CMake
for our build system, we found the nonuniformity of package finding difficult, and so we
developed scimake (http://sourceforge.net/projects/scimake). The mentioning of workflow
systems is done with some hesitation, as what is likely not needed is something highly flexible,
with a visual programming model. First, visual programming models are not keeping up.
Secondly, for the most part, physics workflows are very simple: problem setup, run, analyze,
visualize. Hence, we have developed our SimComposer workflow tools to follow this but to
allow the flexibility of adapting to various applications. With regard to testing, it is important for
this community to have a system that works for HPC applications.
Concluding remarks
While the above discusses the places in an application lifecycle where injections of new
technology can happen, one should always keep in mind that everything gets evaluated, at least
subconsciously, in terms of risk versus reward and cost versus benefit. One should ask: will this
technology get the scientist to his next paper more rapidly, including the time of adoption and
use. Further, in an academic field, such as this, small costs can be prohibitive. E.g., OpenMP is
available in gcc, OpenACC is not. The academic advisor might start a graduate student on a
project involving OpenMP (or even CUDA or OpenCL), but purchasing an expensive compiler
(e.g., PGI) to experiment with OpenACC is less likely. Finally, for maximum adoption, one
should license as freely as possible.

