
Run-time extensibility: anything less is unsustainable

Jed Brown∗, Matthew G. Knepley†, Barry F. Smith‡

Modern computational science and engineering is increasingly defined by multiphysics, multiscale simu-
lation [5] while raising the level of abstraction to risk-aware design and decision problems. This evolution
unavoidably involves deeper software stacks and the cooperation of distributed teams from multiple disci-
plines. Meanwhile, each application area continues to innovate and can be characterized as much by the
forms of extensibility (e.g., boundary conditions, geometry, subgrid closures, analysis techniques, data
sources, and inherent uncertainty/bias) as by the underlying equations. Sanitary workflow is paramount
in this environment, but it is too often compromised so long as the original author’s use case is deemed
acceptable. We argue that many common approaches to configuration and extensibility create artifi-
cial bottlenecks that impede science goals, and that the only sustainable approach is to defer these to
run-time. We present recommendations for implementing such an approach.
Compile-time configuration. The status quo for many applications, especially those written in legacy
Fortran, is to perform configuration in the build system. From the perspective of higher-level analysis,
the build system must then be thought of as the public application programming interface (API). In
other applications, especially those written in C++ or with heavy use of conditional compilation, the
choices must be made at compile time. Compute nodes often do not have access to compilers, making
all build-system and compile-time decisions inaccessible to online analysis. It may be impossible for the
same application to run in both configurations on different nodes or on different MPI communicators.
Advanced analysis. Today’s physics models are increasingly used not just as forward models but as
the target of advanced analysis techniques such as stochastic optimization, risk-aware decisions, and
stability analysis. The forward model must then expose an interface for each form of modification that
the analysis levels can explore. An interface requiring build-time modification shifts an unacceptable
level of complexity to the analysis software and is algorithmically constraining—limiting parallelism,
introducing artificial bottlenecks, and preventing some algorithms.
Provenance and usability. Reproducibility and provenance are perpetual challenges of computational
science that become more acute as the software stack becomes deeper and more models of greater
complexity are coupled. How can we capture the state of all configuration knobs so that a computational
experiment can be reproduced? Compare the complexity of a single configuration file to be read at
run-time with that of a heterogeneous configuration consisting of multiple build systems, files passed
from earlier stages of computation, and run-time configuration. Provenance is simplified by using each
package without modification, compiled in a standard way, and controlled entirely via run-time options.
For both maintenance and provenance reasons, custom components needed for a given computational
experiment are better placed in version-controlled plugins rather than by modifying upstream sources. If
a coherent top-level specification is to be supported in a system with build-time or source-level choices,
those configuration options must be plumbed through all the intermediate levels, often resulting in
another layer of “workflow” scripts and bloated, brittle high-level interfaces.
“Big” data. Workflows that involve multiple executables usually pass information through the file
system. It takes about one hour to read or write the contents of volatile memory to global storage
on today’s top machines, assuming peak I/O bandwidth is reached. The largest allocations are on the
order of tens of millions of core hours (e.g., INCITE), meaning that the entire annual compute budget

∗Argonne National Laboratory, jedbrown@mcs.anl.gov
†University of Chicago, knepley@ci.uchicago.edu
‡Argonne National Laboratory, bsmith@mcs.anl.gov



can be burned in a few reads and writes. Global storage as an algorithmic mechanism is dead: where
out-of-core algorithms have been used in the past, today’s scientists can simply run on more cores, up
to the entire machine; but if the entire machine does not have enough storage, the allocation simply
does not have the budget to run an out-of-core algorithm.
Upstreaming. Fragmentation of software projects is notoriously expensive and should be avoided when
possible. Maintaining local modifications with no plan for upstreaming is a recipe for divergent design—
technical debt that must be paid off to combine the features developed in each fork. Fragmentation
is especially toxic for libraries that may be used by multiple higher-level packages that are combined in
the overall experiment. Maintainers must be diligent to create a welcoming environment for upstream
contributions. The maintainers should nurture a community that can review contributions, advise about
new development approaches, and test new features, with recognition for all forms of contribution. In a
transparent community, it is immediately clear to paper reviewers who did the work to implement a new
feature; thus any attempt to “scoop” a result based on new capability is easily spotted. In addition to
community building [6], developers should provide versatile extension points so that contributions can
be made without compromising existing functionality and without degrading package maintainability.

Implementation and recommendations

To manage these workflow challenges, application developers will need to think more like library de-
velopers [4], controlling namespaces, avoiding global state, relinquishing top-level control, controlling
the scope of parallelism, localizing memory allocation, localizing complexity so that it does not “bubble
up” to the top level, and paying attention to the completeness, generality, and extensibility of all public
interfaces. Our suggestions are shaped by experience developing (PETSc) [2, 1].
Resource allocation. To localize configuration, allocation of resources such as memory should be done
locally, with reference counting when appropriate. Contrary to urban legend, static memory allocation
offers no tangible performance advantage and unavoidably ties the workflow into the build system, while
committing the sin of needless global variables.
Plugins. Source-level dependencies on an implementation (e.g., direct instantiation of a derived class or
a template parameter) rather than a generic interface cause choices from deep in the stack to “bubble
up” via brittle interfaces that plumb the user’s configuration to the appropriate component. Plugins
provide a strong way to identify interfaces that can be extended by users and distributed separately from
the core package. Every class in PETSc has a plugin architecture, from base linear algebra components to
preconditioners, nonlinear solvers, and adaptive controllers for time integration; any of these components
can be provided by a plugin and will be indistinguishable from a native component of PETSc. Plugins
consist of a registration function that is called explicitly or via dlopen(), a creation function that is
called when the plugin is activated, and any supporting functions that will be exposed when the plugin
is instantiated. Historically, Fortran’s type system and inability to store function pointers have conspired
against plugin implementations, but the new standard provides the necessary tools.
Inversion of control, recursive configuration, and the options database. It should be possible to
instantiate the same plugin with different configurations at different locations in the object graph, each
with its own configuration. Since the client does not know how to configure the object, some inversion
of control [3] is necessary (PETSc’s approach is similar to “service locator” in [3]). Multiple instances of
objects are distinguished by a prefix in the options database, allowing arbitrary run-time configuration.
Just-in-time compilation. When the interface granularity cannot be increased to amortize the overhead
of dynamicism, just-in-time (JIT) compilation is an attractive approach to preserve strong encapsulation.
The ubiquity of technologies such as LLVM and OpenCL will allow judicious use of JIT for dynamic
kernel fusion and plugin-style packaging of fine-grained components without sacrificing performance.

http://mcs.anl.gov/petsc


Acknowledgments. JB and BFS were supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research under Contract DE-AC02-06CH11357. MGK acknowledges
partial support from DOE Contract DE-AC02-06CH11357 and NSF Grant OCI-1147680.

References

[1] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc developers manual, tech.
rep., Argonne National Laboratory, 2011.

[2] , PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory,
2013.

[3] M. Fowler, Inversion of control containers and the dependency injection pattern, 2004.

[4] W. D. Gropp, Exploiting existing software in libraries: Successes, failures, and reasons why, in
Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, SIAM, 1999, pp. 21–29.

[5] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,
J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans,
C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jor-
dan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein,
R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. P. Randles, D. Reynolds,
B. Rivière, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, Multiphysics simulations: Challenges
and opportunities, International Journal of High Performance Computing Applications, 27 (2013),
pp. 4–83. Special issue.

[6] M. J. Turk, How to scale a code in the human dimension, arXiv preprint arXiv:1301.7064, (2013).

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on behalf of the Government.


