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Executive Summary

Computational science is approaching a crisis. Mission-critical research on scientific
grand challenge problems has become increasingly dependent on high-performance
computing, and yet the productivity of extreme-scale scientific application
development has lagged. The reason for this growing gap is clear: unique and
dramatic architectural changes in extreme-scale scientific computing platforms
(such as those in DOE’s leadership computing facilities) require more sophisticated
algorithmic and computer science techniques, while complex scientific application
teams targeting these platforms lack the software development tools, libraries, and
methodology needed to be most productive. Within DOE, there are compelling
examples of this impending crisis and how it is starting to be addressed, but a
broader study is needed to generate a strategic vision for research on software
productivity for extreme-scale science, including how to exploit the unique features
of DOE mathematical software and codes simulating physical systems.

This whitepaper presents the background and arguments for investing in this
critical gap, with the goal of improving DOE'’s scientific and computing productivity.
By investing in research to better support collaborative development of long-lived
computational software products, mission-focused scientific research will be more
effective and productive.
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1 Introduction

Extreme-scale computing platforms are increasingly becoming the de facto
computational systems for grand challenge problems in the DOE scientific
community. With these systems, a diverse collection of multiscale and multiphysics
applications has evolved to answer many grand challenge questions. Mission-critical
efforts in climate prediction, environmental management, fusion energy, and
materials science, among others, are poised for breakthroughs with distributed,
multidisciplinary teams, each specializing in particular aspects of modeling and
simulation, using DOE'’s extreme-scale platforms and leadership computing facilities
(LCFs). The extraordinary capabilities of these systems enable scientists to resolve
more scales, sample larger ensembles, and support the coupling of multiple physical
phenomena not possible on lesser computing platforms [7,8,18].

Nevertheless, despite the unprecedented potential of these systems, studies
consistently point to the need for better scientific application software development
processes as a key enabler for fully exploiting these platforms for scientific
advancement [3,6,7,9,12,13,14,15,17,18,19]. Frequent failure modes include the
following:

1. Increasing lag between extreme-scale hardware and algorithmic innovations
and their effective use in applications, leading to poorly scaling codes and
loss of LCF productivity.

2. Lack of agile yet rigorous software engineering practices for high-
performance computational science, thus preventing distributed teams
from fully exploiting extreme-scale platform capabilities.

3. Failure to consider the entire lifecycle of large scientific software efforts,
leading to fragile, complex scientific applications that have become
increasingly difficult to enhance.

These barriers to software productivity, which are hampering progress in critical
scientific application development, hinder DOE’s ability to achieve its mission goals
through computational science. The challenges are perhaps most visible in areas
where DOE investment has focused on the development of one or a handful of large
code-bases that are shared across entire research communities. In such cases, the
large scientific software systems should be thought of as long-term software
investments that provide key infrastructure for a broad range of research aligned
with DOE'’s mission. By analogy to experimental user facilities, such resources
require professional planning, design, staffing, and upgrades to maximize their
useful life and ability to serve their user base.

The confluence of new manycore and accelerator-based architectures with millions
of cores, radical new programming models, and a new generation of multiphysics
applications sets the stage for an inevitable crisis in application software that is
likely to present a significant impediment to realizing the promise of extreme-scale
scientific computing applied to DOE'’s grand science challenges. We recommend
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that DOE invests in research on scientific software productivity and capability in
order to remove these barriers and create robust software development
infrastructure and techniques.

2 Scientific Application Software Challenges at Extreme Scale

As computing architectures, programming paradigms, and computational models
become more complicated, software development has become a major obstacle for
large-scale computational science projects. Key challenges include the following:

* Inherent complexity of today’s sophisticated modeling and simulation
codes. As capabilities of large-scale computers have increased, our
computational models have grown similarly—transitioning from qualitative to
quantitative, with increasing ability to accurately simulate physical phenomena
and to predict experimental observations. The goals and methods of
computational science software have long posed a challenge for traditional
software development methodologies, created in very different contexts. The
size, complexity, and pace of change of modern computational science
applications exacerbate this challenge.

* Extensive parallelism, billion-way concurrency, and uncertainty in
extreme-scale multicore systems. Emerging from a lengthy period of relative
stability in computer architectures, we now face a period of significant flux. New
and emerging computing platforms are characterized by myriad novel
architectural features, including millions of cores, simultaneous multithreading,
vectorization, core heterogeneity, unconventional memory hierarchies, and new
programming models that complicate software development. Additionally, many
domain science communities such as climate, environmental science, fusion, and
materials science have large legacy code bases for conventional computing
systems that will face additional challenges of porting and refactoring to work
efficiently on extreme-scale systems.

* Complex coupling of multiscale and multiphysics component algorithms.
Enabled by rapid advances in computational power, and driven by the need for
higher levels of physical fidelity, multiscale and multiphysics simulations play an
increasingly important role. Applications need common interfaces to facilitate
interoperability and must include well-defined code coupling tools and
methodologies to integrate subcomponents into complete applications, while
supporting the necessary explorations of the mathematics of the couplings.

* Development of stable library interfaces. As intermediate software layers
between lower-level programming environments and higher-level application
codes, libraries provide key functionalities to applications and insulate users
from many architectural complexities. While some approaches to enhance
application-level productivity will also address challenges arising in library
development, these intermediate layers of the software stack face unique
difficulties, requiring the ability to incorporate changes and new features over
time yet provide stable user interfaces. Additional productivity challenges arise
for lower-level tools, including profilers and runtime application support.
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2.1 Commercial Innovation in Software Productivity

Software engineering, defined as the application of a systematic, disciplined,
repeatable, and testable approach to the design, development, operation, and
maintenance of software, was spurred by the software crisis a few decades ago [5].
Since that time, the broader software industry has made significant advances in
understanding and addressing the challenges of the development of complex, large-
scale software systems. Examples of iterative software development methodologies
include (1) unified processes, which emphasize iterations for different roles during a
software project and show the importance of frequent testing and change
management, and (2) agile development processes, which emphasize customer-
driven product iterations, with open visibility into development effort, continuous
testing, and immediate feedback.

Among the best practices identified are the following:

* Component or modular software - a software development construct that
enables a large code to be decomposed into manageable modules, packages,
or containers to facilitate software interchangeability, reusability, and testing.
Examples include aspects of object-oriented design, the open source software
ecosystem, and component-based architectures.

* Software productivity metrics - a set of metrics (reusable, interoperable,
testable, portable, scalable, and easily maintainable) that can greatly improve
software productivity. Examples include integrated development
environments (IDEs), which have code test coverage metrics in test-driven
development, and continuous integration/performance profiling tools. Also
included are software design and architecture analysis, ranging from
automated static analysis and modeling tools, available in the open source
Eclipse framework, to maturity models, such as SEI's Capability Maturity
Model Integration (CMMI) and Architectural Tradeoff Analysis Method
(ATAM).

* Software methodology and architecture - frameworks for planning,
management, and control of the software development process. These are
primarily iterative software development methodologies that aim to deliver
software incrementally and remove risks that contribute to poor quality.

* Collaborative lifecycle management - automated tools or computer-aided
methodologies to assist the management of people, process, information,
governance, maintenance and related tools that drive the software life cycle.
Examples include portals tied directly to software product management, such
as SourceForge and Atlassian’s BitBucket and JIRA, and tools tied to software
configuration management through fully integrated IDEs, such as Microsoft
VisualStudio and IBM Rational suite, and the open source Eclipse framework.

The lessons learned and best practices observed in successful application of
software engineering in other areas of software development provide a good
foundation for addressing the emerging challenges of extreme-scale scientific
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application software. However, we must also recognize the distinctive nature and
needs of computational science software.

2.2 Toward Software Engineering for Computational Science

Several factors explain why the field of computational science has lagged in
adopting many of the software development innovations that have proved
successful in other software areas. One factor is that few computational scientists
receive any training in modern software engineering practices. Many eschew
software engineering based on experience with practices prevalent much earlier in
the field’s development, which, in contrast to today’s techniques, tended to be rigid
and bureaucratic and were not well aligned with typical computational science
software development and usage. Further, today’s scientific culture, including most
funding agencies, tend to view software as the means to an end (new scientific
discovery) rather than a scientific instrument that must be carefully engineered,
maintained, and extended in order to enable novel science.

Other useful software development concepts that have not been addressed in
traditional software engineering but are critical for the computational science
community include the following:

* Software development infrastructure - a holistic community-based, end-
to-end management of services, common standards, workflows, and testing
standards to support multiteam software development effort, especially for
extreme-scale computing.

* Software management workflows - management of collaborative software
development and processes to support reproducibility, provenance, and
maintainability in large simulation projects.

* Verification and validation - application software support for validating
models and physical parameterizations, including novel sampling techniques
to enhance software testing, verification, and model validation.

* Agile research software processes - support for coevolution of software
life cycle processes (modeling, design, coding, testing, and executing complex
software system) and scientific research goals. See [4,11] for a schematic
comparison of validation-centric software projects and phased projects.

* Group dynamics and management - understanding and managing the
human aspects of software productivity and life cycle in a large-scale multi-
disciplinary community code development effort.

* Legacy code refactoring - transitioning legacy code and numerical libraries
to new programming paradigms and computational science software
methodologies for efficient performance on new multicore and hybrid
computing platforms.

* Multiphysics/multiscale component coupling - interfaces with
appropriate levels of encapsulation and granularity that provide stable
resources for applications yet enable performance enhancements and
exploration of new algorithmic approaches.
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Other system management concepts that need further considerations include
software component provenance, software integration workflows and metadata,
and scalable software system architecture. These concepts have been well-studied
and evaluated in commercial software productivity, in frameworks such as the SEI
CMM], and the Predictive Capability Maturity Model (PCMM) [16] for scientific and
engineering applications. Wider adoption of these ideas has the potential to greatly
improve the productivity and quality of large-scale computational science software
projects.

3 Case Studies: Software Productivity in Applications

Large-scale multiphysics, multiscale predictive simulations are a critical component
of DOE science applications. These simulation codes are developed by large, diverse,
and distributed groups of domain scientists, computer scientists, and applied
mathematicians. Developers create full applications by connecting components that
represent important processes at a variety of spatial and temporal scales, as well as
solver capabilities, operators, and other utility functions.

In the appendix we discuss three specific application productivity case studies:

A.1 DOE Climate Modeling Software Infrastructure
A.2 DOE Environmental Management Software Development
A.3 Application Software Productivity for DOE Fusion Energy Sciences

These three applications have been selected as representative examples of a much
broader DOE science and modeling portfolio.

The resulting codes in these projects are themselves complex pieces of software that
are used to inform decisions and must be trusted by end users. Many of these
application codes have developed this trust through a long history of continuous
development over decades, but such legacy code presents additional challenges, as
described below. Application code complexity and high impact argue for increased
attention to software development, software productivity, and software quality. The
immediate need for code readiness on new architectures provides an additional
impetus for rapid adoption of new processes and techniques in software
development. A strong focus on software productivity during this transition will
minimize the disruption while providing mechanisms for ensuring software quality
during refactoring. A number of challenges impact software productivity from the
applications perspective.

Collaborative distributed development. As described in the appendices, all of the
application codes (an even a broader census is included in [14]) are built by using
contributions from large groups of scientists (hundreds in the climate example)
across DOE laboratories and academic sites. Effectively harnessing the
contributions from a large and distributed team of developers requires
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* modern software development processes (e.g., agile, test-driven
development);

* distributed development tools, repositories, and processes; and

* interdisciplinary interactions with agreements on how components couple
together.

Legacy code. In both the climate and fusion applications, expertise and code have
been built up over several decades. During previous transitions in computing
architecture, these groups adapted algorithms to the new architectures. Now, they
must do so again. Refactoring code to take advantage of new hardware and new
algorithms while not adversely impacting scientific progress and built-up trust in
existing codes requires

* adapting to hardware changes and using advanced algorithms,

* testing to preserve functionality and previous results, and

* communicating with an existing user base that is invested in current
approaches.

Lifecycle. Large application codes have a lifetime measured in decades. Even
relatively new codes, such as those being developed in ASCEM [1], must be designed
with this assumption. Designing for a future long life requires

* developing code that can hide architectural changes using abstractions or
other means and

* designing flexible code that can more easily incorporate new capabilities and
new algorithms.

Testing, quality assurance, verification and validation. The three example codes
are used to inform energy choices (climate, fusion), cleanup decisions (EM), and the
design of large-scale experiments (fusion). Ensuring code correctness and trust in
simulation results is critical and requires

* test-driven software development;

* comprehensive testing for multiscale, multiphysics codes using a hierarchy of
unit, integration, regression tests; and

* agraded approach for research code or less critical /sensitive components,
and for processes that are less well understood.

Recruiting and training. All the example applications incorporate large teams of
scientists with a wide range of scientific and coding expertise but often with little
training in software engineering. It is unreasonable to expect a few professional
software engineers to provide this expertise, and often the research-funding
paradigm will not support such an investment. These diverse development teams
need a consistent view of software development, including

* training of the interdisciplinary team to ensure common practices and a
commitment to testing,
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* buy-in by all developers so that process and testing continue to be part of the
development cycle over time, and

* decentralizing of quality assurance so that all are responsible, rather than a
few gatekeepers or software engineers.

A recent report [14] incorporates perspectives of applied mathematicians, computer
scientists, and domain scientist from a much broader range of multiphysics
applications. While the focus of the report is on algorithmic and software challenges
for multiphysics coupling, it emphasizes the universal nature of the issues listed
above and strengthens the argument for an increased focus on extreme-scale
application software productivity.

4 Path Forward for Computational Science Software

The goals we need to accomplish are very challenging, but the seeds of what we
need are already planted by a number of DOE projects. We already have
sophisticated tool sets and processes, as well as software projects that deal with
multiple, modular components and have high standards for software engineering.
In addition, we already have efforts to port applications to modern node
architectures, with emerging insight into strategies for how new application
frameworks should be designed.

The first steps to accomplishing our goals must be to identify, collect, and
disseminate our existing knowledge and experiences. Once we have a clear picture
of the current state, we can then identify gaps and proceed to fill them.

4.1 Early Experiences from Numerical Libraries and Prototype Applications
Although few applications have embarked on the substantial refactoring required to
realize scalability on emerging manycore and accelerator platforms, a substantial
amount of work has gone into preparing numerical libraries for these platforms.
Furthermore, some prototype applications—starting points for future versions of
our large-scale applications—have been fundamentally redesigned in numerous
ways in order to explore the emerging design space. From these efforts we make
the following observations that are likely to be broadly applicable:

1. The performance-critical parts of existing applications will be displaced
or modified: To scale on emerging platforms, we must exploit vectorization
for every important loop set. To have sufficient thread-level parallelism, we
must refactor computational functions to have no side effects. These facts
affect every key data structure and function in existing applications. With
careful planning and design, we can make the transformation cost low per
line of code, but the sheer number of lines will make the cost unavoidably
high. Promising strategies are already underway in numerical libraries,
where separation of the control logic of the algorithms from the
computational kernels of the solvers has proven crucial to allow injecting
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new hardware-specific computational kernels without having to rewrite the
entire solver software stack.

2. New algorithms will be essential for key computations: While solvers and
other algorithms with global data dependence are often the most
computationally intensive parts of high-performance simulations, these
algorithms do not always scale well. Recursions, collective operations, and
data-driven parallelism pose a significant challenge for current approaches,
and new extreme-scale algorithms must be developed.

3. We are well positioned to exploit the unique features of mathematical
software and codes simulating physical systems for extreme-scale
scientific software productivity research: The community is already
beginning to address software organization and design challenges through
numerical libraries and software tools, which are an essential foundation of
many DOE scientific applications. We can further leverage the mathematical
nature of DOE codes to facilitate software development and testing.

4.2 Implications for the Future

Transformation and expansion of existing applications to fully utilize emerging
platforms will require a very large software design and refactoring effort. Of
particular importance is a focus on addressing the unique requirements of large-scale
multiphysics and multiscale applications. Although the extreme-scale computing
community has already made strides in understanding some of the challenges we
face, the complexity of our algorithms and software brings with it challenges that
appear only when combining physics and scales.

We must both leverage the experience and progress made so far, and also make new
investments. In particular, we must focus on new algorithms research and
development, multiphysics/multiscale prototypes for rapid design space
exploration, and thorough planning for the reorganization of existing functionality.
Only with substantial and focused planning and investment will we be able to
successfully migrate our existing application base and supporting high-performance
software infrastructure to next-generation computing systems.

5 Addressing Application Software Productivity Challenges in
the Office of Science: Recommendations

Addressing these challenges in extreme-scale application software productivity is
essential in order to fully exploit emerging architectures for scientific discovery.
Moreover, because software is the practical means through which computational
science collaboration occurs, this work is a prime opportunity for synergistic
collaboration across the Office of Science, centered on partnerships between ASCR
and its sister programs in DOE/SC, as well as activities in concert with NNSA and
other DOE offices. The following are some of the most important recommended
activities:
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* Convene a workshop to identify the short and long-term research challenges
of extreme-scale scientific application software productivity.

* Include application software productivity as an integral part of the Exascale
Computing Initiative (ECI) discussions.

* Develop a strategic plan to address long-term extreme-scale computational
science software productivity challenges.

Additional priorities include:

* Address software implications of extreme-scale systems productivity.

* Develop and disseminate educational materials on emerging lessons learned
from early manycore application development efforts and best practices in
scientific software engineering.

* Address HPC legacy code refactoring to take advantage of new architectures
and programming models.

* Determine strategies for the extreme-scale computational science
community to leverage and influence software best practices.

Success in these activities will require coordinated investment from other agencies
such as NSF, DOD, and NASA.
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Appendix A: Application Software Productivity Case Studies

We expand on the exteme-scale software productivity challenges introduced in
Section 3 from the perspective of three mission-critical DOE applications: climate
modeling, environmental management, and magnetic fusion energy.

A.1 DOE Climate Modeling Software Infrastructure

Climate Modeling and Simulation Software Challenges

A climate model is the canonical multiphysics and multiscale application.
Representing all the internal variability and other features of the climate system
requires several individual models of the atmosphere, ocean, ice, and land coupled
to one another through exchanges of heat, mass, and momentum. Each of these
models is itself a multiphysics application. For example, the atmosphere includes
components describing chemistry, geophysical fluid dynamics, radiative transfer,
and other processes. The climate system is multiscale in both time and space.

Figure A.1: Chlorophyll concentration from an eddy-resolving ocean simulation that
includes a biogeochemical model to explore ocean carbon uptake and acidification.

Length scales range from the micrometer scales of cloud microphysics to the
planetary scales of major circulation features. New variable resolution approaches
are being introduced to capture part of this range, but some processes will always
be parameterized. Time scales from seconds to minutes must be resolved while
performing decadal and centennial simulations for longer-term variability and
analysis of climate change. Results from climate simulations are used by a broad
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range of users in order to identify strategies for adapting to and mitigating the
effects of climate change. In order to provide these users with better estimates of
regional/local changes and climate extremes, ensembles of simulations and high-
resolution simulations are needed. Current high-resolution (~10 km grid spacing)
configurations require over 100M core-hours on leadership-class computing
resources for a small (5-member) ensemble of only 30 simulated years each.

The development of coupled climate models involves hundreds of climate scientists,
applied mathematicians, and computer scientists working on all aspects of the
model in order to include appropriate physical models, create the most accurate and
efficient algorithms, and implement these on the available computer architectures.
DOE researchers currently collaborate on the Community Earth System Model
(CESM) that includes over 300 developers working on 1.2 million lines of code
mostly written in Fortran. The long history of climate modeling dating back to the
1960s has required implementing the models on new computing architectures
while also preserving the fidelity of current simulations. In fact, BER is initiating a
new project that will start with the CESM code base but develop a version that can
better utilize DOE leadership computing and is more targeted to climate problems of
interest to DOE. This transition beyond petascale to exascale systems will require
substantial refactoring of the CESM, exploration of new algorithmic choices, and a
significant investment in software engineering to ensure a more efficient transition.

The software productivity and engineering challenges include the following:

* Refactoring legacy code and introducing new algorithms to exploit the
capabilities of new computing architectures

* Introduction of more comprehensive V&V and UQ frameworks, particularly
in an environment where data is often sparse and first-principle solutions
are not available

* Training in and adoption of proven software methodologies that can be
customized for large, distributed climate model development teams

* Evolution of coupling methodologies for new variable-resolution component
models

* Development of a communitywide high-performance climate modeling
software infrastructure as recommended by a recent NRC report [6]. This
infrastructure should feature shared abstractions that enable performance
portability, adaptability to rapid changes in underlying architecture, and ease
of programming for nonexpert developers.
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A.2 DOE Environmental Management Software Development

The Office of Environmental Management (EM) oversees the remediation and
closure of DOE sites storing legacy waste from the development of nuclear weapons
and related technologies. Although significant cleanup progress has been made,
several large and technically complex sites remain, with total life cycle cost
estimates between $272 and $327 billion. The groundwater and soil contamination
alone includes more than 40 million cubic meters of contaminated soil and debris
and 1.7 trillion gallons of
contaminated
groundwater at 17 sites

90
Total UV 80
gy 3005 ]
24005 _ 79}
18005 E 1
12005 N

| |

Mo in 11 states [20]. At
(SR re—— P S e these complex sites the
me conservative
LT —\ simplifications and
[ e abstractions used in the
e P | ‘ past to estimate the fate

R T o— and transport of
contaminants can lead to

Figure A.2: Simulations of complex geochemistry and hydrology at overly conservative and
the Savannah River F-Area seepage basins capture the retardation costly remediation and
of the Uranium plume, prior to any remedial action. Sorption of
Uranium depends on the pH, and hence, the Uranium plume (top)
lags behind the acidic front of the waste water (bottom).
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Manipulation of pH is a key ingredient in controlling Uranium problems that remain,
migration in the future [10]. ASCEM tools under development will  the highly uncertain and
support simulations and analysis of the effects of ongoing and multiscale nature of the

future remedial actions leading to better projections of the time
and cost required to meet remedial goals.

subsurface hydrology
and geochemical
transport must be
treated mechanistically, requiring advanced modeling and data analysis techniques
that leverage modern computational resources in order to inform a comprehensive
approach to risk and performance assessment. To address this urgent need for
transformational solutions, EM initiated the Advanced Simulation Capability for
Environmental Management (ASCEM) program in 2010 [1]. The expectation of DOE-
EM and the earth science community is that programs such as ASCEM can move
beyond existing regulatory codes, significantly reducing reliance on conservative
abstractions and simplifications through the use of advanced and emerging
computational methods.

Software Challenges of Subsurface Process Simulation

Subsurface flow and transport are governed by a particularly challenging suite of
coupled multiscale processes (including surface and subsurface flows, bio-
geochemical reactions, and thermal-mechanical deformations) occurring in highly
heterogeneous subsurface environments with external forcing. Exacerbating the
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complexity is the often-limited information about the heterogeneous distribution of
subsurface flow and transport properties and reaction networks. Consequently, risk
and performance assessment uses a graded and iterative approach to underpin
scientifically defensible decisions and strategies. This approach first establishes
simplified models and then iteratively enhances geometric and process level
complexity to identify and characterize the key processes and assumptions that are
needed to efficiently reach a defensible decision. ASCEM must design its approach
and tools to handle this workflow, not only to be flexible and extensible, but also to
leverage an increasingly powerful and diverse set of computational resources. To
achieve this goal the ASCEM program has identified common themes found in
multiscale and multiphysics applications, and has assembled an interdisciplinary
team to leverage advances from various DOE SC programs, ASC, and earth science.
This effort is in its infancy and faces many of the challenges outlined previously in
Section 3. At the heart of these challenges for ASCEM is the need to develop a new
approach to the lifecycle of software tools in the earth sciences. In particular,
development and collaboration tools continue to advance, enabling much more agile
approaches that can make use of hierarchal and automated testing. Furthermore,
languages and design methodologies continue to advance, improving our ability to
reduce long-term maintenance and refactoring costs. These advances could enable
a much more efficient approach to development and maintenance of regulatory
codes, whose strict quality assurance requirements have significantly hindered
adoption of new algorithms and architectures. Key software engineering challenges
include the following:

* Developing a new modular hierarchical design of integrated tools that not
only addresses life cycle needs for flexibility and extensibility, but also
provides a suitable framework to refactor or encapsulate existing robust
legacy tools

* Developing a comprehensive hierarchical approach to testing that aligns
development practices with the efficient migration of code from the research
branch, through stable community code releases, to fully qualified regulatory
releases (NQA-1 [2])

* Supporting flexible nonlinear workflows that integrate tools, data, and
simulations, which are distributed across a range of platforms, in order to
inform the graded and iterative modeling approach and subsequent cleanup
and monitoring

* Training an interdisciplinary team to have a common understanding of both
the application modeling and simulation needs, as well as modern agile
software design, development, and testing practices

* Meeting the demand for high-fidelity multiscale process-level simulations
through new algorithms and/or implementations on emerging architectures,
in order to address discretization, solver, statistical sampling, and
visualization needs.

A focused effort to address these complex software engineering challenges is
needed in order to realize the potential benefits of emerging computational power.
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A.3 Application Software Productivity for DOE Fusion Energy Sciences

Fusion Energy Modeling and Simulation Software Challenges

The goal of modeling and simulations in fusion energy research is to harness the
rapidly increasing power of extreme-scale computing platforms in order to simulate
the complex dynamics governing key magnetic confinement properties of fusion-
grade plasmas—especially ITER, a $20-billion international experimental device
under construction in France and involving the partnership of 7 governments
representing over half the world’s population. Fundamentally, the fusion of light
nuclides forms the basis of energy release in the universe, which can potentially be
harnessed and used as a clean and sustainable supply of energy on Earth. In order to
build the scientific foundations needed to develop fusion energy, a key requirement
is the timely development of reliable predictive simulation capabilities for
magnetically confined fusion plasmas. Fusion energy science (FES) simulation is
well recognized as a grand challenge multiphysics, multiscale science application. A
large international FES community of computational plasma physicists, applied
mathematicians, and computer scientists has been actively engaged over the years
in the development of increasingly realistic physics-based predictive modeling
capabilities.

Advanced computing is expected to be vital for accelerating the needed progress in
FES research in the 21st century. The imperative is to translate the combination of
the rapid advances in supercomputing power from the petascale to the exascale
range and beyond, together with the emergence of effective new algorithms and
computational methodologies to help enable corresponding increases in the physics
fidelity and the performance of the scientific codes used to model complex physical
systems. The magnetic fusion energy research community has made excellent
progress in developing advanced codes for which computer runtime and problem
size scale very well with the number of processors on massively parallel
supercomputers. A good example is the effective usage of the full power of modern
leadership class computational platforms at the petascale and beyond to produce
nonlinear particle-in-cell simulations that have accelerated progress in
understanding the nature of plasma turbulence. For example, Figure A.3 shows
results from a petascale-level production simulation (24M CPU hours, engaging
100K cores of the OLCF Jaguar system for 240 hours) that was carried out by the
XGC-1 code, which integrates plasma dynamics in the complex edge with the core
region of the DIII-D Tokamak plasma. More recently, excellent demonstrations in
fusion codes have been presented that illustrate the algorithmic progress in dealing
with low-memory-per-core, extreme-scale computing challenges for the current top
4 supercomputers worldwide—just prior to the recent introduction of China'’s
Tianhe-2 computer system.
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Addressing formidable
questions from a whole-
system perspective in
magnetic fusion energy
research will require
development of integrated
predictive simulation
capabilities with
unprecedented physics
fidelity. This will require
proper cross-validation of
laboratory experiments
with a suite of advanced
codes in regimes relevant
for producing practical

Figure A.3: Flux driven turbulence (fluctuating electrostatic fusion energy. Adoption of

potential), filling the whole plasma volume in diverted DIII-D
geometry.

proper software
engineering principles for

engaging verification, validation, and uncertainty quantification (VVUQ) will
demand systematic testing and improved community development practices.
Associated software engineering challenges for FES include the following:

Modernization of legacy fluid (MHD) codes through novel programming
approaches to demonstrate scalability on new multicore/manycore
computing architectures

More effective V&V and UQ frameworks and workflows to improve the
physics fidelity and reliability of the integrated FES code, with the goal of
providing “open-source” solutions to FES applications scientists

Evolution of coupling/integration methodologies to enable possible adoption
of variable-resolution component models, and more tightly integrated
component coupling to address the challenge of reducing communications on
the path to extreme-scale systems

Exploration of modern machine learning methodologies to address “big data”
challenges associated with avoiding macroscopic disruptive events in fusion-
grade plasmas

Development of a communitywide high-performance FES modeling software
infrastructure with shared abstractions that enable portability and
adaptability to rapid changes in underlying architecture, and ease of
programming for nonexpert developers

Recruiting and training new software engineers and computational scientists
to complement existing personnel and fill needed capabilities



Harnessing the Full Capability of Extreme-Scale Computing E

References

[1] Advanced Simulation Capability for Environmental Management (ASCEM)
program, URL: http://ascemdoe.org.

[2] ASME NQA-1-2004 (including addenda 2005 and 2007), Quality Assurance
Requirements for Nuclear Facility Applications, American Society of
Mechanical Engineers, 2007.

[3] ASCR Programming Challenges for Exascale Computing, Office of Science, U.S.
Department of Energy, 2011. URL:
http://science.energy.gov/~/media/ascr/pdf/program-
documents/docs/ProgrammingChallengesWorkshopReport.pdf.

[4] R.Bartlett, M. Heroux, ]. Willenbring, TriBITS Lifecycle Model Version 1.0: A
Lean/Agile Software Lifecycle Model for Research-based Computational
Science and Engineering and Applied Mathematical Software, SANDIA
REPORT SAND2012-0561, February 2012.

[5] L.Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

3rd Edition. Software Engineering Institute series in Software Engineering.
Addison-Wesley, 2012. ISBN: 9780321815736.

[6] C. Bretherton (Chair), A National Strategy for Advancing Climate Modeling,
National Research Council of the National Academies, 2012.

[7] D. Brown and P. Messina (Chairs), Scientific Grand Challenges: Crosscutting
Technologies for Computing at the Exascale, 2010. URL:
http://science.energy.gov/%7E/media/ascr/pdf/program-
documents/docs/Crosscutting grand_challenges.pdf.

[8] J. Dongarra, P. Beckman, et al. The International Exascale Software Project

Roadmap, IJHPCA, 25:3-60, 2011.

[9] ]. Dongarra, R. Graybill, W. Harrod, R. Lucas, E. Lusk, P. Luszczek, ]. McMahon,
A. Snavely, ]. Vetter, K. Yelick, S. Alam, R. Campbell, L. Carrington, T.-Y. Chen,
0. Khalilj, J. Meredith, M. Tikir, DARPA's HPCS Program: History, Models,
Tools, Languages, 2008.

[10]M. Freshley, S. Hubbard, I. Gorton, J. D. Moulton C. I. Steefel, V. Freedman,

H. Wainwright, et al. Phase Il Demonstration. Technical Report ASCEM-SITE-
2012-01, Office of Environmental Management, United States Department of
Energy, Washington, DC, 2012.

[11]M. Heroux, R. Bartlett, ]. Willenbring. Software Engineering Principles: The
TriBITS Lifecycle Model, DOE Climate Summit. Berkeley, CA, December 2012.
URL: http://www.sandia.gov/~maherou/docs/HerouxTribitsOverview.pdf.

[12]]. Kepner, Guest Editor, High Productivity Computing Systems and the Path
Towards Usable Petascale Computing, Part A: User Productivity Challenges,



http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://science.energy.gov/%7E/media/ascr/pdf/program-documents/docs/Crosscutting_grand_challenges.pdf
http://www.sandia.gov/~maherou/docs/HerouxTribitsOverview.pdf
http://ascemdoe.org

m Extreme-Scale Scientific Application Software Productivity

Cyberinfrastructure Technology Watch (CTWatch) Quarterly,
http://www.ctwatch.org, Volume 2, Number 4A, November 2006.

[13]]. Kepner, Guest Editor, High Productivity Computing Systems and the Path
Towards Usable Petascale Computing, Part B: System Productivity
Technologies, Cyberinfrastructure Technology Watch (CTWatch)
Quarterly, http://www.ctwatch.org, Volume 2, Number 4B, November
2006.

[14]D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, ]. Bell,
J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. Farhat, A.
Hakim, G. Hammond, G. Hansen, ]. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik,
E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, ]. Magerlein, R. Maxwell, M.
McCourt, M. Mehl, R. Pawlowski, A. P. Randles, D. Reynolds, B. Riviere, U.
Ride, T. Scheibe, ]. Shadid, B. Sheehan, M. Shephard, A. Siegel, B. Smith, X.
Tang, C. Wilson, and B. Wohlmuth. Multiphysics simulations: Challenges and
opportunities, IJHPCA, 27(1):4-83, Feb 2013, special issue. doi:
10.1177/1094342012468181.

[15]P. Kogge (Editor), Exascale Computing Study: Technology Challenges in
Achieving Exascale Systems, Sept 2008.

[16]W. L. Oberkampf, M. Pilch, and T. G. Trucano, Predictive Capability Maturity
Model for Computational Modeling and Simulation, SANDIA REPORT
SAND2007-5948, October 2007, available at:
https://cfwebprod.sandia.gov/cfdocs/CCIM /docs/Oberkampf-Pilch-
Trucano-SAND2007-5948.pdf.

[17]E. Przybylowicz (Chair), Advice on the Department of Energy’s Cleanup and
Technology Roadmap: Gaps and Bridges, National Research Council of the
National Academies, 2009.

[18]R. Rosner (Chair). The Opportunities and Challenges of Exascale Computing.
Office of Science, U.S. Department of Energy, 2010. URL:
http://science.energy.gov/ /media/ascr/ascac/pdf/reports/Exascale_subco
mmittee_report.pdf.

[19]S. Sachs (Editor). Tools for Exascale Computing: Challenges and Strategies,
Report of the 2011 ASCR Exascale Tools Workshop, Office of Science, U.S.
Department of Energy, 2011. URL:
http://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20W
orkshop/Exascale_Tools Workshop_Report.pdf.

[20]Science and Technology to Reduce the Life Cycle Cost of Closure - Investing in
Our Future: Technology Innovation and Development for Footprint Reduction,
Office of Environmental Management, U.S. Department of Energy,
Washington, D.C., 2010.



http://www.ctwatch.org
http://www.ctwatch.org
http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1177/1094342012468181
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/Oberkampf-Pilch-Trucano-SAND2007-5948.pdf
http://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20Workshop/Exascale_Tools_Workshop_Report.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf

