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Topic: Optimization algorithms for inverse problems under uncertainty 

Challenge: A catalyst is a substance that accelerates chemical reactions or reduces the energy required to 
initiate them, without being consumed in the process. By lowering the energy barrier reactants must 
overcome, catalysts enable faster, more sustainable transformations. Beyond accelerating reactions, they 
often exhibit precise selectivity, steering pathways toward desired products while minimizing byproducts. 
Optimizing catalytic performance (activity, selectivity, and stability) is critical for many modern industrial 
processes, yet designing catalysts experimentally remains costly and complex. For instance, porous 
nanocatalysts depend on intricate variables such as the spatial distribution of active sites, pore geometry, 
functional group composition, and external conditions like temperature, pressure or solvent effects. These 
parameters create a vast, high-dimensional search space where only sparse regions yield high-performing 
candidates. While atomistic simulations and electronic structure theory have expanded predictive 
capabilities, the combinatorial explosion of variables makes systematic exploration impractical. This 
positions catalyst design as an inverse problem: identifying the optimal combination of atomic-scale 
properties, nanoscale morphology, and operational conditions to achieve target performance metrics, guided 
by computational models and data-driven strategies. However, catalyst optimization is inherently an inverse 
problem under uncertainty, which may arise at every stage of catalyst design, e.g., from noisy, incomplete 
observations to approximations in models. Current inverse optimization workflows struggle to represent 
and communicate uncertainty, especially as problem complexity grows. Uncertain visualization has the 
potential to enhance the inverse optimization problem by providing intuitive and practical tools to capture 
multiple sources of uncertainty. However, data’s ever-increasing size and complexity pose fundamental 
challenges to existing visualization techniques. For example, combining ensemble simulations with 
surrogate models (common in large-scale DOE applications) introduces layered uncertainties that are hard 
to reconcile and present clearly. Users need to understand how uncertainties in data and model together 
affect the inverse solution, but existing tools often fail to clarify these complex relationships. 

Opportunity: Effective uncertainty visualization bridges technical complexity and human insight, 
transforming uncertainty from a barrier into a strategic asset. Tailored tools can align with domain expertise, 
helping researchers prioritize robust designs and avoid unstable configurations. For example, integrating 
uncertainty visualization into catalytic digital twins (virtual models of reactors updated with operando data) 
could revolutionize high stakes catalyst testing. Domain scientists could assess not just predicted 
activity/selectivity/stability but also the confidence behind these metrics, adjusting reaction conditions to 
balance performance and catalyst deactivation risks. For the DOE, such tools translate raw error bounds 
into actionable insights, enabling bottom-up designs of catalyst architectures for impactful physical, 
chemical and biological transformations. 

Uncertainty-aware visualization also offers a roadmap for accelerated catalyst discovery. From DOE 
facilities like light sources or supercomputers, visualizing uncertainties in inferred parameters (e.g., 
adsorption energies, surface coverage) can guide scientists to experiments that resolve critical ambiguity. 
Interactive dashboards can map how proposed spectroscopy experiments or atomic simulations decrease 
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uncertainties in material properties, accelerating discovery with fewer trials. Similarly, in hybrid models 
blending physics and AI, visualization can flag regions where surrogate models extrapolate beyond reliable 
data (e.g., predicting alloy stability under extreme temperatures or pressures), guiding targeted operando 
data collection or high-fidelity simulations. 

By embracing these approaches, DOE can overcome the needle-in-a-haystack search for optimal catalysts, 
accelerating breakthroughs in energy and critical materials. 

Innovation: Realizing these opportunities demands breakthroughs in uncertainty-aware visual 
analytics and human-AI collaboration: 

1. High-Dimensional Uncertainty Visual Encoding: Develop 
intuitive tools to visualize uncertainty in high-dimensional 
parameter and solution space. Techniques involve data 
abstraction, structure extraction, and simplification to arrive at a 
compact and hierarchical representation (Figure 1, top) and 
quantifying and incorporating uncertainty information for visual 
exploration to reveal hidden solution modes (Figure 1, bottom).  

2. Interactive Optimization Interfaces: Embed visualization directly 
into optimization loops. For example, real-time Pareto frontiers 
with uncertainty bands could let users adjust objective weightings 
(e.g., prioritizing stability over activity) while instantly seeing 
how risks shift. Integrated "proof sketches" might visually trace 
how data or model assumptions drive specific solutions, building trust in AI-generated designs. 

3. Uncertainty-aware human-AI collaboration: Uncertain visualization also has the potential to integrate 
human feedback into machine learning models, where human involvement can build trust in the system 
and provide insights into its decision-making process. While AI can train generative models to learn 
the distribution of solutions, humans can annotate areas of concern and propagate those annotations 
back into the computational model (closing the loop between qualitative expert judgement and 
quantitative analysis). 

In conclusion, making visualization uncertainty a cornerstone of optimization algorithms for inverse 
problems will enable users to fully exploit advances in computation and data. Investing in uncertainty-
aware visualization research will lay the groundwork for inverse methods that are not just mathematically 
optimal, but also cognitively and practically optimal for human decision-makers. This alignment of 
computational and human perspectives will be key to tackling the next generation of scientific challenges 
under uncertainty. 

 

Figure 1: Top: Visual representation of 
chemical reaction spaces as a graph. Bottom: 
Atmospheric rivers and their uncertainty 
visualization.   
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