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A major challenge in solving inverse problems for high-consequence science and engineering 
applications is neglecting to fully account for uncertainties. Some optimization formulations for 
inverse problems involve objectives that capture uncertainties with the data-generating process; 
this can be done in the form of statistical likelihoods and treated from both frequentist (e.g., via 
maximum likelihood estimation) and Bayesian (e.g., via maximum a posteriori estimation) 
perspectives. Although it is vital to take into account uncertainties in the data, such approaches 
typically neglect how the inferred parameters will be used in downstream decisions. 
 
One example where it is critical to account for downstream tasks arises from "implementation 
errors." For example, consider the inverse problem of determining material properties from 
samples imaged at a DOE light source. If one wants to then replicate this material, or alter it 
toward a specific aim, then it is important to understand the precision with which the inferred 
parameters can actually be implemented. In many settings, knowing that a synthesis process 
can only be implemented within a prescribed precision (e.g., curing temperature within 0.1 
degrees Celsius, chemical volume up to 0.001 mL) could significantly alter the "optimal" 
parameters that should be employed. Our position is that it is vital to account for uncertainties 
such as implementation errors; not doing so risks prioritizing reduction of forward model 
mismatches over the actual subsequent uses of the resulting forward model. By moving into the 
optimization formulation the uncertainties essential to the downstream tasks performed with the 
inversion parameters, the resulting parameters will be born decision-ready. 
 
Myriad examples exist where this would be a gamechanger. For example, nuclear waste 
management represents a critical application where parameter sensitivity affects safety 
outcomes. When characterizing repository sites using inverse methods, uncertainties in 
geological parameters must be considered alongside downstream operational variability and 
constraints. Similarly, in agent-based model calibration for energy infrastructure planning, 
inferred parameters drive decisions about resource allocation and grid resilience that have 
significant implementation tolerances. Finally, in quantum material design, inferred electronic 
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structure parameters must account for both measurement uncertainty and the precision 
limitations of synthesis techniques to produce viable energy storage solutions.  
 
A key opportunity exists to pursue robust optimization [1] approaches that ensure optimized 
parameters are insensitive to perturbations from multiple sources. By explicitly accounting for 
uncertainties in data acquisition, forward model approximations, and parameter implementation 
constraints, we can develop inverse methods that deliver solutions with quantifiable reliability 
bounds. This shift toward decision-aware inverse problems could transform how DOE facilities 
utilize characterization data by connecting upstream inference directly to downstream decision 
processes. The impact would be particularly significant for experimental design workflows where 
the objective is not merely to infer parameters but to guide future experiments or manufacturing 
processes with well-characterized uncertainty. Successfully addressing these opportunities 
would reduce costly iteration cycles between characterization and implementation across 
multiple DOE mission areas. 
 
Several breakthroughs are essential to enable this new paradigm. First, we need computational 
frameworks that can efficiently handle the inherent nonlinearity introduced when accounting for 
both data and decision uncertainties simultaneously. Current methods that separately address 
these sources of uncertainty fail to capture important interactions and trade-offs. Second, 
hierarchical approaches that strategically decompose the problem structure are needed to 
navigate the highly nonconvex, multimodal objective function landscapes that arise in these 
formulations. These approaches must adaptively determine which uncertainties dominate in 
different regions of parameter space. Finally, developing specialized regularization techniques 
that reflect implementation constraints rather than just statistical priors would create more 
practical solutions. These innovations would transform inverse problems from academic 
inference exercises into practical decision support tools that directly address the gap between 
characterization and implementation in complex systems. 
 
By considering all the uncertainties that arise in the inverse problem and the ways in which the 
inversion will be used, optimization-based approaches can directly mitigate failure modes of 
current practice. Models and methods that instantiate and solve such a capability are crucial for 
accelerating scientific discovery and improving decision making.  
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