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WCAPP also represents a collaboration among a large number of scientists
from national labs and academia
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Graduate Students
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We have improved visibility this year; grad school applications have increased by ~ 10 over first 2 years of WCAPP!
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For us, some of the missing
pieces are “missing physics,”
the untested Physics of Atoms




The scientific revolution in

Astronomy:

Technologies like Z at SNL, NIF at LLNL, and
Omega at LLE make possible experiments under

Cosmic Conditions

EXAMPLES:
* lIron opacity in the interior of the Sun & Sun-like stars, Z

 New models of the Lunar origin, Z
« Experimental explorations of EoS under astrophysical

conditions, NIF






Z MACHINE USES 26 MILLION AMPERES TO
CREATE INTENSE X-RAYS



Experiments on Z access a broad range of the energy-density phase space

High Energy Density (HED) Regime
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Experiments on Z access a broad range of the energy-density phase space

High Energy Density (HED) Regime
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WCAPP experiments exploit megaloules of x-rays to simultaneously address
four separate astrophysics topics with experiments at astrophysical conditions

4 ) ) ] ) /Atomic kinetics in warm absorber\
Stellar interior opacity photoionized plasmas

\ /
/Resonant Auger Destruction anON Fe/Mg foil /Spectral line formation in )
RRC in accretion-powered Ne white dwarf photospheres

explodlng 'm
foil

Z x-ray source
1-2 MJ; 2104 W

H gas cell

« Multiple samples are exposed to x-rays from Z on each shot
* Crucial for progress on oversubscribed MJ-class facility




The first Z oxygen opacity experiments address key challenges for
resolving the solar problem.
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Modeled and measured iron opacity
disagree at solar interior conditions
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* Oxygen is a major contributor to solar opacity Wavelength A

o

T.=182eV, n=3

- Oxygen measurements are essential to resolve the solar problem

—> Oxygen opacity is also important for white dwarf stars

* Opacity model questions: o.zs% e CEA
*  lonization distribution " o) opas  Fe
* Line broadening : 0_4 Ne ‘
. Continuum lowering — bound states mix with continuum 210l

 New Experiment challenges: : °'°5|ll.
* Target fabrication o B

712 67 8101112131416 1820 2425 26 28

 Extended wavelength range atomic number
 Plasma diagnostics

Opacity contribution
at solar CZB (0.7R)

Preliminary oxygen opacity measurement at T,~160 eV, n_ ~ 8x10%! cm™3
provides foundation for future data at near solar interior conditions




Summary: Z data can benchmark models of emission from
photoionized accretion-powered plasmas

Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra

- These models are largely untested in the laboratory

- Need benchmark quality data

= A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z

= Spectral absorption and emission are measured to high reproducibility enabling emission

benchmark code comparison* ﬁ
\

=  Presently, models do not reproduce neither relative or absolute emission

- How accurate are emission models for accretion-powered sources? | l
absorptlon

Recent experimental developments:

*  First RRC from a photoionized plasma was obtained on Z = typical observation

"  Complete He-like line series obtained on Z = high constrain on emission

= Ultra high resolution emission spectra = line identification

= First Fe spectrum to address the super-solar abundance problem

* Time-resolved emission measurements initial fielding = transient photoionization

*G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)

Si He-like emission



Photoionized plasma trends in ionization and heating

e Systematic measurements of heating! and ionization? as a function of ionization parameter
 (Quantitative characterization of energy balance and ionization/recombination processes
* Data challenge modeling codes and is relevant for interpreting origin of disk accreting wind
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The Importa nce of White Dwarf Spectra
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Hot DQ measurements at the Z machine
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Electric field —

The Physics of Occupation Probability (OP)

Rausch and Tranenberg (1929_1931) lel0 p=1.10e-06 g/cm?3, Lemke tables, Synspec fits

e z2553:time=45ns
(1.25 eV, 17.28): pseudo off
— (1.25 eV, 17.28): pseudo on

23 24 25 26 27 28 29 30 31
eV

energy/frequency —

Also called “continuum lowering” or “ionization potential depression”
Due to the plasma environment, an atom can experience electric fields large enough that a bound electron may
escape to the continuum or to a “collectivized” state

This is not treated as a collisional or inelastic process
An electron escaping by tunneling is an example that can decrease the occupation probability below 1.0
There is a critical electric field (or distance of closest approach of the nearest ion) beyond which the state is

assumed not to exist
This process should modify the strengths and shapes of spectral lines 19



New Generation of Hydrogen Line Profiles for WD Stars

P. B. Cho, T. Gomez, M. H. Montgomery, B. H. Dunlap, M. Fitz Axen, B. Hobbs, I. Hubeny, T. Nagayama, and D. E. Winget

These profiles improve on the previous generation of calculations by including:

lon dynamics

Higher-order multipole expansion for perturber electric fields

Expanded basis set (“n+1” states included)
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Astrophysical Feedback: Coming Full Cycle

For our work to have quantitative
implications for astrophysics, we have to
take what we learn about single Te, ne
plasmas on Z and incorporate this into a
model white dwarf atmosphere.

Patty Cho 1s leading an effort to insert
new H Lyman and Balmer line profiles
(from Thomas Gomez) into the model
atmosphere code TLUSTY (I. Hubeny,
U. of Arizona), and we’re starting to
explore the impact of these new model
atmospheres on our inferences about
white dwarf stars. Completing the cycle
for determining the quantitative
implications for astrophysics.

Vidal et al. (1973) profiles
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Another way
of
thinking
Full Cycle!
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