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2 Executive Summary  
 
Storage systems are a foundational component of computational, experimental, and          
observational science today. The success of Department of Energy (DOE) activities           
in these areas is inextricably tied to the usability, performance, and reliability of             
Storage Systems and Input/Output (SSIO) technologies. In September 2018, a          
diverse group of domain and computer scientists from the Office of Science, the             
National Nuclear Security Administration, industry, and academia will assemble in          
Gaithersburg, Maryland, to update and review the SSIO requirements identified          
during the comprehensive SSIO 2014 workshop for simulation-driven activities         
associated with DOE’s science, energy, and national security missions, to assess the            
state of the art in key storage system and I/O areas, to consider the implications of                
data and learning applications on SSIO requirements, and to identify potential           
research directions in SSIO for extreme scale DOE science. 
 
This activity is planned as a single-track, two day, workshop. The workshop is             
organized around six topical areas identified by the organizers as areas where gaps             
exist in capabilities required for DOE science to proceed at pace. Each day begins              
with an initial set of talks and a panel that provide context and background for the                
attendees, followed by rigorous moderated discussion of three of the topics: 

● Hardware/software architectures 
● Metadata, name spaces, and provenance 
● Supporting science workflows 
● Deepening storage hierarchies 
● Understanding storage systems and I/O 
● Streaming data 

 
The purpose of this pre-workshop document is to provide important background           
and context for our attendees. Building from and augmenting the 2015 report, this             
document captures a summary of mission drivers and an assessment of the state of              
the art and challenges in each of the six above mentioned areas. Further, this              
document will serve as the starting point for the final report capturing the outcomes              
of the 2018 workshop, and as such is a work in progress. 
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3 Introduction 
 
Computation and simulation advance knowledge in science, energy, and national          
security. The United States has been a leader in high-performance computing (HPC)            
for decades, and U.S. researchers greatly benefit from open access to advanced            
computing facilities, software, and programming tools. As HPC systems become          
more capable, computational scientists are now turning their attention to new           
challenges, including the certification of complex engineered systems such as new           
reactor designs and the analysis of climate mitigation alternatives such as carbon            
sequestration approaches. Problems of this type demonstrate a need for computing           
power 1,000 times greater than we have today; and the solution is exascale             
computing, the next milestone in HPC capability. 
 
At the same time, high-performance computing is playing an increasingly critical           
role in understanding experimental and observational data (EOD) from platforms          
such as the Large Hadron Collider, which is a key tool in better understanding              
fundamental questions in physics, and the upcoming Large Synoptic Survey          
Telescope, which when deployed will provide greater insight into the structure of            
the Universe. Learning applications, too, are beginning to employ high-performance          
computing. Achieving the power efficiency, reliability, and programmability goals         
for exascale HPC, EOD, and learning applications will have dramatic impacts on            
computing at all scales, from personal computers (PCs) to mid-range computing and            
beyond; the broader application of exascale computing can provide tremendous          
advantages for fundamental science and industrial competitiveness. 
 
Storage Systems and I/O (SSIO) research and development is a cornerstone of data             
intensive computing tasks of all types, including simulations at scale,          
experimental/observational science, and learning applications. SSIO technologies       
include a range of hardware and software, from the low-level parallel file system             
(e.g., Lustre, GPFS) and archival storage (e.g., HPSS) up to libraries that serve as the               
interfaces to applications and provide format interoperability, as well as software           
that monitors and reports on the utilization of the storage system. Advances in SSIO              
improve the capability, scalability, and robustness of storage solutions, enabling          
larger volumes of data to be stored, accessed, and their integrity to be maintained.              
Improvements to SSIO software systems improves the productivity of DOE scientists           
by facilitating the discovery of and access to their data and reduces the cost to               
operate storage systems by improving our understanding of storage system          
behavior and enabling adaptation in these systems. 
 
Technological improvements are occurring at a rapid pace in the areas of memory,             
storage and I/O. New nonvolatile memory technologies (e.g., 3D XPoint® and Intel            1

1 3D XPoint is a trademark of Intel Corporation 
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Optane® DIMM), drive technologies (e.g., shingled disks, NVMe), and changes in           2

system architectures such as the proliferation of cores on node and shifts to more              
cost-effective networks all necessitate research to understand how these         
technologies are best adapted for use in service of DOE science. At the same time, an                
explosion of new types of DOE science are appearing on DOE systems, machine             
learning applications and the analysis of experimental and observational data being           
two examples. These new applications break many of the assumptions made in the             
past by developers of SSIO system software, and in many cases new designs are              
needed to account for these new behaviors. This combination of rapid technological            
change and a dramatic influx of new application classes drive the prioritization of             
essential new research activities in the SSIO area. 
 
The purpose of this pre-workshop document is to provide important background           
and context for our workshop attendees. Building from and augmenting the 2015            
report, this document captures a summary of mission drivers and an assessment of             
the state of the art and challenges in key SSIO research areas. Further, this              
document will serve as the starting point for the final report capturing the outcomes              
of the 2018 workshop, and as such is a work in progress. 
 
The report is organized as follows. Section 4 summarizes the DOE mission            
requirements for SSIO. Section 5 discusses in depth the state of the art and              
challenges to be addressed to advance SSIO technologies in support of DOE mission.             
Section 6 discusses some supporting activities that were previously identified as           
helpful in enabling successful R&D in the SSIO area.  

2 Optane is a registered trademark of Intel Corporation 
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4 Mission Drivers 
 
For the 2014 SSIO workshop series, the workshop organizers invited input from a             
group of distinguished scientists developing application codes for next-generation         
and future exascale DOE platforms. These scientists are involved in a wide range of              
DOE Office of Science and NNSA mission-critical applications. The scientists          
reported on anticipated scientific challenges and how SSIO capabilities might enable           
them to meet these challenges. Many of the discussions were based on work from              
the NNSA Advanced Simulation and Computing (ASC) code teams, as well as the             
SciDAC co-design centers [CoDesign] that were charged to ensure that future           
architectures are well suited for DOE target applications. 
 
Since then, numerous workshops and requirements reviews have considered         
technology changes and storage and I/O requirements for DOE Office of Science            
science teams using large-scale computing resources, including: 

● The 2015 Workshop on Management, Analysis, and Visualization of         
Experimental and Observational Data [Bethel2015] 

● The 2015 Workshop on Integrated Simulations for Magnetic Fusion Energy          
Sciences [Bonoli2015] 

● The 2016 Streaming Requirements, Experience, Applications and       
Middleware Workshop (STREAM2016) [Fox2016] 

● The 2015-2016 Exascale Requirements Reviews for HEP [Habib2015], BES         
[Windus2015], FES [Chang2016], BER [Arkin2016], NP [Carlson2016], and        
ASCR [Vetter2016], which are summarized in the 2017 Crosscut Report          
[Hack2017]. 

 
These workshops and requirements reviews contain the combined expertise of          
vendors, hardware architects, system software developers, domain scientists,        
computer scientists, and applied mathematicians who are at the forefront of           
anticipating features and tradeoffs in exascale hardware, software, and underlying          
algorithms. 
 
This section builds on the material from the 2014 workshop series, augments that             
material with findings from these subsequent events, and also incorporates          
extensive knowledge from the organizing committee on numerous applications         
from fusion energy, materials science, climate science, accelerator physics, and          
other domains.  
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4.1 Overview 
 
Historically the Office of Science computing facilities have served science teams           
employing simulation codes to better understand phenomena of interest to the           
Department of Energy. However, more recently teams have begun to investigate the            
efficacy of using these resources for new computational tasks, including analysis of            
large datasets from scientific instruments and the training for machine and deep            
learning. In fact, all these computational tasks can be considered “big data” science             
relevant to DOE missions, in that they have significant data requirements in addition             
to significant computational needs. In the subsequent discussion, we refer to this as             
data-intensive science. In this section we give a quick rundown of their            
characteristics in terms of the common nomenclature of the five V’s: volume,            
velocity, variety, veracity, and value. 
 
Volume. Much of the total volume from HPC applications comes from checkpoint            
files. Most of this information is written once, and almost never read in. With the               
inclusion of “burst buffers” in modern systems, simulation applications are          
demonstrating an ability to write large volumes of checkpoint data efficiently.           
However, many scientists are expressing a growing need to understand more of the             
“physics” in their simulations; simple data reduction techniques are becoming          
insufficient for proper analysis. Users of codes such as the XGC1 [Ku2006]            
simulation, one of largest users of leadership-class facilities (over 300 million hours            
at ANL, NERSC, and ORNL in 2015), have launched a series of simulations that need               
to write out 100 PB of data in order to capture all of the turbulence data for runs on                   
the Titan system [Titan2015], the prior OLCF platform. Because of the lack of             
storage and because of the time needed to write this amount of data, the simulation               
will be able to write only about 10 PB. This may cause scientists to miss important                
artifacts and opportunities for discovery. Large Hadron Collider (LHC) data output           
is expected to grow from approximately 10 PB/year to 150 PB/year by 2025, with              
an additional 600 PB/year of derived data produced by the community           
[Habib2015]. 
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Velocity. Higher velocities (i.e., rates of data generation) will be seen from many             
leading applications because of the nature of compute accelerators and nodes with            
high core counts on certain next-generation systems. Simulations such as the QMC            
code [QMCPACK2015], which use quantum Monte Carlo techniques to understand          
material properties, are already investing in in situ data reduction and analysis,            
since they are generating over 2 TB of data from their simulation every 10 seconds.               
Similarly, next-generation experiments such as ITER [Lister2003] will begin to          
generate data at over 2 PB/day. More recently, the FES community has identified             
near-real-time data analysis as a key enabler of decision making; approach depends            
both on effective management of high-velocity data and also the training of machine             
learning models on large scientific datasets [Bonoli2015]. Similar requirements are          
expected in EOD-based science. For example, the Large Synoptic Survey Telescope           
(LSST) is slated to come online in 2019, eventually generating 3.2 Gpixel images on a               
20 second cadence, with a requirement to provide initial analysis of these images             
within a minute of image capture [LSST2009]. 
 
Variety. Simulations are producing a wide range of variables in their output that             
they later need to correlate and understand together. We see this situation from             
climate simulations, among other leading-edge simulations. Generally on each         
process each variable is “small,” but there are often hundreds of variables, which             
create many new challenges when they are generated from high levels of            
concurrency. One implication for the SSIO community is that metadata will continue            
to increase as the variety of data increases, and the management of large amounts of               
small data will become increasingly important, including the ability to organize or            
find and quickly access this large variety of data. 
 
Veracity. Data integrity has become a critical part of the simulation workflow, and             
most of the application teams are focusing on some aspect of uncertainty            
quantification (UQ) [Carey2014, Najm2003, Reagana2003]. These simulations are        
using either intrusive UQ techniques (e.g., in combustion) that could potentially           
generate zettabytes of data, or they are employing non-intrusive techniques (used in            
many of the NNSA applications) and creating new I/O and storage use-cases            
(described below). Data need to be moved and processed with this integrity            
information in hand for subsequent analysis. In the case of stockpile modernization            
efforts, quantification of uncertainty in simulations is essential as experimental          
verification and validation is no longer available. 
 
Value. As we reach the age where simulations cannot output as much data as they               
would like (e.g., the XGC1 simulation described above), many choices must be made             
to understand which data products will have later value. Among other           
characteristics, the value of the data is also impacted by how much it can be reduced                
for fast post-processing. One of the common themes voiced by application scientists            
is that once data go to archival storage, they are rarely read again because of the                
time to access those data. New storage tiers, such as object-based tiers            
[Inman2017], have the potential to keep more data readily available, while new            
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research is investigating how to retain the provenance of the data and understand             
what the different variables may contain. 

4.2 Scientific Workflows 
 
In Flynn’s taxonomy for classifying computer programming paradigms [Flynn2011],         
traditional monolithic simulation codes are known as single instruction, multiple          
data (SIMD) programs. The common alternative to SIMD is the multiple instruction,            
multiple data (MIMD) paradigm, where a number of different tasks are executed at             
the same time in a large parallel job. These tasks may be expressed as separate               
executables and may each be handling a different aspect of a complex model, such as               
chemistry and fluid dynamics in a turbulent combustion model. Alternatively, the           
different tasks may form a simulation program plus a number of different in situ              
analysis programs, simulations coupled with analysis routines that compare the          
outputs from the simulations, or simulations being compared with experimental          
observations. In the context of experimental and observational data analysis (EOD)           
and in learning applications, these tasks may be different phases of data triage and              
training or analysis. Another way to describe these MIMD applications is as a             
scientific workflow, also described as an in situ workflow [Deelman2018]. A high            
level view of these is provided here, and more detail is included in S.5.3. 
 
In many of these cases, there is a stringent demand on communicating a large              
amount of data from one task to another, often accomplished via the storage and I/O               
system. Some of these tasks produce a large amount of data to be stored              
persistently. Additionally, some workflows may also read a large amount of input            
data, such as the initial condition required at the start of a simulation, the boundary               
conditions needed at every step of the simulation, a large corpus of training data,              
EOD for comparison against simulation results, or other purposes. Application          
scientists identify a number of characteristics of these scientific workflows; we           
briefly highlight three: 
 
• Homogeneous tasks. An important class of scientific workflow is one made           

up primarily of a large number of homogeneous tasks. One example is a set of               
independent tasks in an uncertainty quantification (UQ) run, where each task           
is using the same executable but with different input parameters. Another           
common example is an ensemble run of climate models where each instance of             
the ensemble uses a different model. Of course, and alternatively, UQ jobs and             
climate modeling runs could easily be composed of different executables that           
each perform a different set of operations. 

• Long-running services. Certain tasks in a scientific workflow may need to be            
run as persistent services. For example, a number of simulation programs           
involve complex materials, and the large number of chemical reactions and           
information about these chemistry processes could best be captured in an           
equation-of-state service, or more generally in a computation caching service          
(e.g., [Jenkins2017]). Other workflows may benefit from data services such as           

10 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



multi-dimensional or key-value data stores (e.g., [Greenberg2015],       
[Zhang2017]). However, existing large-scale systems typically execute in batch         
mode, where all executables are terminated when the batch job terminates,           
and persistent services need to last beyond the end of any single batch job.              
Supporting long-running service tasks will require supercomputer centers to         
change their mode of operations. Such a change would also benefit           
long-running data analysis services. 

• Composition. The approach of connecting different tasks into a larger          
structure is used extensively for large-scale distributed data analysis and          
learning applications, and is beginning to be employed in parallel simulations.           
Considerable work will be needed to develop and refine workflow          
composition, scheduling, and execution tools for use on future HPC platforms.           
A large workflow is likely to produce and consume data in variety of ways. It               
may also utilize the I/O system to carry information among the workflow            
components and therefore impose strong performance requirements on the         
SSIO systems. These workflows will almost certainly have a new type of I/O             
where different nodes write large data from one component often at the same             
time as other components, which can increase the I/O variability. 

4.2.1 Simulation Example: Adjoint-based sensitivity analysis 
To examine the I/O operations in more detail, we next consider a UQ workflow, a               
combustion simulation program from the Center for Exascale Simulation of          
Combustion in Turbulence (ExaCT), one of the SciDAC co-design centers. It employs            
an uncertainty quantification (UQ) approach known as adjoint-based sensitivity         
analysis, an optimal approach for the direct numerical simulation in combustion           
[Carey2014]. A key challenge of the adjoint workflow for time-dependent          
applications is the storage and I/O requirements for saving the application state.            
During the time-reversal portion of the workflow, the forward state is required in             
last-in-first-out order. To avoid storing all the states, the co-design team developed            
an approach of regenerating the states from checkpoints. 
 
This approach dramatically reduces the total volume of stored data, allows the            
caching of state in the regeneration window in memory and on local solid state disks               
(SSDs), may accelerate the application execution by reducing output frequency, and           
reduces the power overhead from I/O. For example, a number of checkpoints that             
are hundreds of time steps apart may be stored on disks. During the time reversal               
phase, the application uses the checkpoints on disk to restart the computations,            
generates the intermediate states and stores those intermediate states on local           
SSDs. Since the intermediate time steps are not written back to global storage, this              
approach reduces the I/O time. Since it does not recompute all the time steps, this               
approach also reduces the amount of computation. The researchers in this project            
are particularly concerned with the cost of data recomputation as compared with            
the cost of storage (e.g., write the data, and then read the data a little later because                 
of the limited memory on the system). This is a specific example of the more general                
trade-off between storing code and recomputing (where possible) versus storing          
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data; and as FLOPs become cheaper, this ratio of cost of recomputation vs.             
write/read will change. 
 
In this use case, the application scientists are also using two techniques to reduce              
space requirements, and these techniques also affect the I/O operations. The first            
technique is to replace the simple uniform mesh used in earlier simulations with an              
AMR (adaptive mesh refinement) mesh [Berger1989]. The AMR mesh is dynamically           
adjusted to place more mesh points in regions in the simulation domain where the              
quantities of interest are varying quickly. This approach allows more mesh points to             
be used in regions that need a higher resolution and can reduce the overall number               
of mesh points used in the simulation. However, the simulated quantities are stored             
in more complex structures as compared with the original uniform mesh. The            
second technique used by application scientists is to concentrate on “regions of            
influence” for sensitivity analysis instead of computing on the entire simulation           
domain. This strategy again reduces the amount of computation performed during           
sensitivity analysis; however, since the regions of influence can be of arbitrary            
shape, additional data structures are needed in order to keep track of the domain of               
sensitivity analysis computations. Both techniques have implications for how SSIO          
technologies can best support science data storage. 

4.2.2 EOD Example: The Compact Muon Solenoid (CMS) Experiment 
The CMS experiment [CMS n.d.] at the Large Hadron Collider (LHC) [LHC n.d.] is an               
international collaboration focusing on the Higgs boson and new physics beyond the            
standard model. The CMS detector is a general purpose particle detector that            
captures particle collisions within the LHC at a rate of up to 40 million raw detector                
readouts per second; these initial readouts are filtered at the detector down to a              
stream at 600Hz. The design of the detector enables scientists to reconstruct the             
paths of particles passing through the detector, with great precision.  
 
Storage and I/O requirements for CMS are detailed in [Bockelman2018]. The           
detector has generated 90 PB of raw data to date, but simulations and analysis of               
this data have resulted in a volume of additional derived datasets that is twice as               
large as the raw data. Simulations are used to understand properties of the detector              
and also to assess the quality of reconstruction algorithms: in the latter case,             
synthetic events are generated and the output of the detector simulated, then the             
reconstruction algorithm is employed: output of the reconstruction algorithm is          
then compared to the known “truth” generated by simulation. In the case of detector              
analysis, a simpler multi-phase workflow reconstructs “tracks” (i.e., paths of          
particles) from detector data, aggregates results from many such reconstructions,          
and later workflows fit models to the aggregated data. 
 
The first dataset required by most workflows is the physics software itself: this is a               
complex software package often deployed using FUSE-based technologies (i.e.,         
CVMFS [Blomer2015]), and can be as large as 10 GBytes for a release. Raw detector               
data and derived data products are typically managed using the ROOT software            
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package [Brun1997]. ROOT files store a sparse tabular structure of events, each with             
a set of associated objects. An event is typically described with a few hundred              
objects, each with a few thousand attributes. Additional information on the run,            
statistics, and provenance is also typically included to allow for reconstruction of            
the analysis steps. This complex structure has proven very useful in providing the             
flexibility necessary for scientists to perform a wide variety of tasks using the same              
underlying data model. ROOT files are typically stored directly on a file system (e.g.,              
a parallel file system in the HPC context), and many such files might be              
independently analyzed as part of a large analysis workflow. For performance           
reasons output files are often merged in memory before writing. Due to the size of               
the data managed as part of CMS activities, compression is critical to make best use               
of hardware investments: this is further facilitated by merging. 
 
The High Luminosity LHC (HL-LHC) [HL-LHC n.d.] upgrade, to begin taking data in             
2026, is estimated to generate between 5 and 30 times more data than has been               
currently produced, and events will take significantly more time to run           
reconstruction [Bockelman2018, Albrecht2017]. 

4.2.3 Learning Example: Low-Level Whole-Detector Data Analysis at the LHC 
 
Researchers are also exploring the application of learning approaches to data           
analysis for the LHC. In [Bhimji2017, DEEP n.d.], researchers apply deep neural            
networks directly to detector data with the goal of identifying new massive            
supersymmetric (‘RPV-Susy’) particles in multi-jet final states. Prior analysis         
methodology and results are described in [ATLAS2017]. In this work, the           
researchers use the Pythia event generator [Sjostrand2008] and Delphes detector          
simulator [DeFavereau2014] to generate event data for training, using a training           
sample of approximately 400,000 events, finding the approach compares favorably          
to traditional appoaches. 
 
The availability of tools such as Pythia and Delphes allow for the generation of              
sufficient training data, and commodity learning packages and libraries facilitate          
rapid development of classifiers. In this case Tensorflow [Abadi2016] was employed           
on the Cori system [Cori2015] for training. While just one example of the application              
of learning algorithms toward DOE mission science, it is indicative of a growing             
interest in using large-scale computing systems in conjunction with learning          
algorithms as a tool for understanding complex datasets. 
 

4.3 Input/Output Characteristics 
 
To summarize the I/O characteristics of the representative applications, we first           
consider common use cases involving file systems. We then describe the more            
advanced uses involving deep memory hierarchies, in situ data exchanges, and           
selective access to data. 
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4.3.1 Simulations 
 
Most of these applications require a modest amount of input data at the beginning of               
a simulation run, along with data that may be read in when they continue from a                
previous run. The input data typically contain parameters defining the simulation's           
initial conditions to be used in the differential equations that represent the            
evolution of the variables being simulated. In such cases, this input data may be              
shared among the processors. Having immutable storage specifically for such input           
files could reduce the I/O operation overhead and improve the overall application's            
performance. Additionally, as many simulations start to validate their solutions          
against experimental or observational results, data must be read in from the            
different experiments in order to ensure that the simulation is “realistic” for the             
given conditions. For example, in many fusion experiments, data from the many            
diagnostics on fusion devices are ingested at the beginning of a simulation. As time              
progresses, the fusion reactors continue to grow in size and more diagnostic            
instruments are built into the reactors, where each instrument is capable of            
collecting data more quickly than before. Together, the data collected from the            
experiments increases and the data passed to the simulations will also grow. 
 
Simulations produce many different types of output data. We generally categorize           
them into two types: defensive output for error recovery and productive output for             
scientific objectives. A typical defensive output is a global checkpoint file (or set of              
files), where a globally consistent state of the simulation is written to persistent             
storage to assist in restarting the application should it terminate before completion.            
A productive output can be just the output of the current state from a fusion               
experiment, which is derived from the magnetic field vector from the simulation. In             
many cases, the defensive output files are also used as productive output, because             
all of the data (e.g., in a combustion simulation such as S3D) are necessary for full                
data analytics. 
 
Because checkpoint files contain all the information necessary to regenerate the           
entire state of the simulation, while the productive analysis output needs only to             
summarize key features of the simulation, defensive output is generally larger than            
productive output. For example, many fusion scientists using particle-in-cell (PIC)          
techniques [Dawson1983] might write out the cell data frequently in order to            
understand the “fluid” effects of the physics. The kinetic (particle) information is            
much larger and is often written infrequently because of the size of the data. 
 
In applications that use checkpoint files for analysis, current codes can generate            
petabytes from a single run, and future runs may produce a large number of such               
files, cumulatively totaling exabytes in size. For those whose checkpoint data are            
productive as well as defensive, application users often adjust the frequency of            
checkpointing based on the expected analysis needs, rather than based on error            
recovery needs. They frequently produce more checkpoint files than the “optimal”           
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rate recommended for error recovery [Daly2006]. Application scientists also adjust          
the frequency of checkpointing to limit the I/O time to a relatively small fraction of               
the total execution time. Most existing simulation codes perform their checkpointing           
operations by directly writing data to files, instead of using a checkpointing library.  
 

As parallel computers grow in size, there is considerable interest in moving away             
from writing checkpoints to a global, parallel file system. Hybrid checkpointing           
schemes, such as the Scalable Checkpoint/Restart (SCR) library [Moody2010] and          
the Fault Tolerant Interface (FTI) [Bautista-Gomez2011], are gaining acceptance         
among application scientists. 
 
So far, the discussion on I/O operation has touched only on bulk data operations.              
Alongside these operations are common operations involving metadata, such as          
provenance retrieval. In most cases, such metadata operations involve a relatively           
small volume of data and do not take a significant amount of time. However, a               
complex simulation may generate a large amount of metadata, especially when the            
simulation consists of a large ensemble of relatively small tasks. Metadata is            
discussed further in S.4.5-6. 

4.3.2 Data, learning, and hybrid applications 
 
DOE also supports a number of important applications that exhibit different data            
access patterns from the more traditional pattern described above. For example,           
global climate models frequently assimilate observational data into their         
simulations, and high-energy physics collision simulations often incorporate        
calibration data of accelerators. In a number of other use cases, data analysis             
operations fuse simulation data and experimental observations, and this data          
analysis also requires reading a large amount of experimental data while the            
simulation is progressing. Data and learning applications are often very          
read-intensive, in many cases operating on datasets consistent of many,          
modest-sized files. The topic of streaming data is further discussed in S.5.6. 

15 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



4.3.3 Initial Impact of Nonvolatile Storage 
 
Modern machines have nonvolatile memory (NVRAM) that can be used for storing            
checkpoint files and frequently-used input data (e.g., through systems like          
DataWarp [Cray DataWarp n.d.]). NVRAM allows the checkpoint data to be written            
more quickly. When the checkpoint data can be discarded, this approach clearly            
reduces the traffic to the relatively slow disk storage systems and significantly            
improves the I/O time. 
 
When multiple tasks in a parallel job share data, the data transfer may be conducted               
through in-memory mechanisms instead of through the parallel file systems. One           
realization of this is through in situ data analysis systems, which will be discussed in               
more detail in the next section. Another common issue is that the analysis may              
require only a portion of the data instead of the whole data set—for example, only               
those data records in the region of influence mentioned in the previous use case.              
These selective data accesses could be made more efficient through techniques such            
as indexing. However, most existing checkpoint files or checkpointing libraries do           
not yet support indexing. The topic of nonvolatile storage is further discussed in             
S.5.4. 

4.4 Implications of In Situ Analysis on the SSIO Community 
 
Many large-scale scientific simulations routinely write out immense amounts of data           
on today’s HPC systems, such as in the case of XGC1 writing 100 petabytes (PB) of                
data per run on the Titan platform. Such “big data” impose steadily increasing             
pressure on the SSIO systems. In fact, I/O is now widely recognized as a severe               
performance bottleneck for both simulation and data analysis, and this bottleneck is            
expected to worsen with an order of magnitude increase in the disparity between             
computation and I/O capacity on future exascale machines. 
 
In order to mitigate the I/O bottleneck, leadership scientific applications (e.g., XGC1,            
QMCPACK, S3D, HACC) have begun to use in situ data analytics, in which analytics              
are deployed on the same platform where the simulation runs, with simulation            
output data processed online while they are being generated. Compared with           
conventional post-processing methods that first write data to storage and then read            
it back for analysis, in situ analytics can reduce on-machine data movement and disk              
I/O volume and can deliver faster insights from raw data [Klasky2011].  
 
Incorporating in situ analysis and visualization poses many challenges for          
applications. Arguably, however, essentially all application scientists already use         
their home-grown in situ analysis in codes. Scientists routinely create derived           
variables from a combination of their fundamental variables and then perform           
different analysis (Fourier, feature finding routines, addition of Lagrangian particles          
to understand flows in simulations, etc.). The question that is generally posed to             
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scientists—“What will you do when you can’t write as much as you want, because of               
architectural changes?”—has existed since the advent of supercomputing. The         
fundamental change that applications are now seeing is not the inclusion of in situ              
analysis but rather the inclusion of “computer science codes” developed outside the            
application team for use during in situ analysis. Scientists are wary of including             
other code in their simulation for good reasons. The challenges generally are as             
follows: 
 

1. Can the analysis routines run when/where there are idle resources? As           
simulations evolve on systems, we see many unused cycles (due to issues            
with OpenMP, etc.) that could be used by in situ analysis operations. There             
are funded projects that are working to address these issues, such as using             
task-based parallelism and dynamically moving tasks to locations where         
there are free cycles. In much the same way, there is an urgent need for               
analytics and visualization tasks to move to locations where application          
scientists allow them, i.e. where they are available for auxiliary services. This            
same challenge exists for future SSIO services. 

2. Can new services be used on all hardware platforms available to an            
application community? This question applies not only to in situ analysis           
services but also to a variety of potential SSIO service designs. It requires that              
these services be able to be executed in a variety of ways: on-node – using               
different cores, on-node – using free cycles on the same cores as the             
simulation, off-node – on the same exascale resource, or off-machine on a            
nearby resource. Research is necessary in order to ensure this flexibility of            
service deployment. This should also allow the inclusion of UQ analytics to be             
used in this suite of services. 

3. Can analysis tasks be shipped to another computer system or preserved for            
future execution? For analysis that needs to meet hard time constraints, it            
might be necessary to either ship some analysis tasks to another computer            
system or save the task for future execution. Enabling this capability has            
implications for the connections between programming models, workflow,        
and data abstractions and representations. 

4. Can users ensure that the simulation does not pause as someone is visualizing             
or analyzing data at a previous time step? The ability to interact with actively              
executing simulation codes is becoming a more pressing issue on exascale           
machines.  

 
Today several in situ visualization and analysis services are being used in            
applications. ADIOS [Lofstead2008] is an I/O framework that allows applications to           
use I/O staging (on-node, off-node, off-machine) and run different executables.          
GLEAN [Vishwanath2011a] uses a similar methodology in order execute analysis          
pipelines. Catalyst allows users to embed analysis routines into their simulation,           
which then call VTK/Paraview [Henderson2004] code, which is similar to LibSim           
[Whitlock2011]. Each of these frameworks has tradeoffs, and more research is           
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necessary to understand how to best provide needed data services in support of             
exascale science.  

 

4.5 Data Organization and Archiving 
 
Many application programs running on the current generation of supercomputers          
still write data in custom formats. However, the majority of the data files being              
shared by large scientific projects are using popular file formats such as ADIOS BP              
[Lofstead2008], HDF5 [Folk1999], and netCDF [Rew1990]. Some applications teams         
use popular file formats because of their convenience and portability, while others            
use a custom data format for performance reasons or to minimize code            
dependencies. Other data organizations, such as databases and key-value stores, are           
being investigated in response to different scientific models and use cases (e.g.,            
[Docan2012, Greenberg2015]).  
 
This diversity of data organizations and needs creates challenges to our community            
that must be addressed for the future architectures. One of the biggest challenges is              
how to integrate new solutions into many of the leading DOE applications. In             
particular, how do we take current I/O solutions and improve the performance for             
common I/O tasks, without having to customize them for each application?           
Alternatively, how can we streamline the process of service customization? 
 
The application teams commonly argue for application-specific forms of         
compression as part of the I/O routines. Asynchronous in situ techniques are being             
explored to decouple the I/O application performance from the storage system. I/O            
variability is also an important phenomenon that greatly affects the applications’           
ability to write effectively, deterministically, to the file system. 
 
Using a well-supported high-level I/O library facilitates the sharing of data among a             
large community of scientists. Professional software development efforts could be          
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directed to build high-quality data analysis tools using such I/O libraries. For            
example, the climate community is using a large set of data analysis tools on              
petabytes of netCDF files [Williams1997]; the high-energy physics community is          
using a highly effective data analysis environment based on ROOT files [Brun1997];            
and many researchers in the fusion community have used ADIOS-BP to exchange            
many petabytes of simulation data [Lofstead2008]. These shared I/O libraries are           
also making it easier for applications to read and write a large amount of data in                
parallel. Research challenges exist to ensure that the “schemas” from different           
communities remain standard, so that data can be easily converted among the            
common file formats. Such standardization will reduce the need to develop           
customized data readers for data analysis and visualization. 
 
Because high-quality, efficient I/O libraries reduce the amount of programming          
effort needed to handle I/O operations and facilitate exchanges of data in large user              
communities, they will be an essential component of any exascale software stack.            
For these libraries to be adopted effectively in the upcoming high-performance           
computers, the following issues need to be addressed: 
 

• Performance. The I/O system must be highly efficient in a wide variety of             
use cases: uniform meshes, semi-structured meshes, and unstructured        
meshes. These records could be organized in a variety of ways (e.g., arrays,             
trees, networks). Furthermore, the system must have efficient read and write           
operations for all of these use cases, not just one.  

• Scalability. A successful I/O library for exascale computers must be efficient           
at different job sizes, ranging from a few nodes on the machine to the whole               
machine. The library needs to make efficient use of the different architectural            
variations available within the federated machine. These different        
architectures either place more resources (e.g., memory, computational        
power, NVRAM) on each node (scale-up) or utilize more nodes with fewer            
resources on each node (scale-out). Each option has its own SSIO challenges.  

• Resilience. Given that persistent data files are the key results of many            
important activities, the integrity of these data files must be unimpeachable.           
This requirement plays an important role in the adoption of new file formats.             
As the data sizes increase, files must still be readable even when a portion of               
the data is not reliable. New research into file formats that can withstand             
failures is critical for future adoption. This is often the strategy taken by             
many Monte Carlo simulations such as QMCPACK and from some PIC           
simulations. 

• Compression. Some forms of compression are already supported by the          
current generation of I/O libraries. In at least one of the applications, it is              
effective in reducing the output size as well as reducing the I/O time. Both              
lossless and lossy compression methods could be used to reduce the I/O cost.             
When lossy compression is used, it is highly desirable to provide ways to             
quantify the loss introduced by the compression. However, since the impact           
of compression typically depends on the analysis operations to be          
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performed, it is challenging to be able to quantify the impact without            
knowing the analysis to be performed after the data files are produced.            
Compression techniques must also be very fast in order to keep up with the              
high data velocities being presented. For example, in the QMCPack          
application, 2 TB of data are produced on 8K nodes every 10 seconds, which              
means that 256 MB/node must be compressed and written to the storage            
system every 10 seconds. Since the data at this scale will overflow the burst              
buffers on current systems, compression must be very fast in order to greatly             
reduce the I/O overhead, and it must be significant in cost savings (10 times              
less data) in order for it to be relevant to application science. Data reduction              
can also be achieved by selectively reducing the spatial, temporal, and           
numerical resolution of the data saved for later analysis, often without           
compromising the value of the data. 

• Function shipping. As more analysis operations are added to a simulation,           
some analysis tasks may need to be deferred or sent to another computer. In              
such cases, the I/O systems may need to record the analysis operations and             
execute these operations when arriving at the detection or resurrected from           
disk. Additionally, the storage system may need to present a notion of            
locality, so that other software can co-locate analysis with data. 

 
Outside of demands on I/O libraries themselves, many of the large scientific projects             
keep only relatively recent data on disk, while keeping older data records on             
tertiary storage systems such as HPSS [Watson1995]. Data on disk is often            
considered online because it can be accessed with common I/O libraries, whereas            
data in tertiary storage is considered offline because it has to go through an              
extensive data transfer process before it is usable by a data analysis program.             
Typically, online data is available in milliseconds, while offline data may require            
hours or weeks to become available. Such a gap is a tremendous barrier for user               
access to data in tertiary storage and, so, a challenge to analyzing data stored in this                
way.  
 
A number of application scientists have expressed a desire to have a near-line             
storage system with latencies much less than the offline storage. Such a system             
would increase scientific productivity by allowing the scientists to access a larger            
amount of data for a longer period of time even though the access might be               
somewhat slower than true online storage. Early examples of systems such as this             
are deployed today (e.g., MarFS [Inman2017]). This feature might be particularly           
useful for large scientific experiments with highly valuable data and large user            
communities. The challenge to the SSIO community is to understand how best to             
organize data across the many tiers of storage.  
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4.6 Metadata and Provenance 
 
Metadata is commonly divided into two broad categories: structural metadata,          
which concerns the design and specification of the data structure, and descriptive            
metadata, which comprises all other associated information such as creator,          
meaning, intended uses, provenance, associations, and context. Historically, such         
metadata was captured in handwritten entries in laboratory notebooks. Many          
attempts have been made to automatically capture metadata. So far, the most well             
known success stories in HPC are the self-describing file formats used to capture the              
bulk of scientific data. These contain not only the arrays of raw data but also the                
structural information about the arrays, such as their names, data types, and array             
dimensions. Because of the diversity of descriptive metadata, however, attempts to           
capture this information automatically have not produced widely adopted tools. 
 
Agencies have begun to require the data displayed in research publications, such as             
data used to create a graph, to be accessible in order to support validation of results                
[SC n.d.]. This policy has been translated into a number of efforts to automatically              
capture provenance information, which describes the origin and history of a data            
object or a data set. Provenance information could also make the validation of             
results more likely. However, certain important details of the data generation           
process, such as compiler optimization flags used to generate the executables or            
floating-point rounding properties, are frequently omitted from the provenance         
information, thus frustrating potential replication efforts. In certain highly regulated          
computing environments, it may be possible to require that all such information be             
documented precisely and all executables run under the same workflow          
management system; however, in general, it is not possible to force all users to              
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develop and run their programs in the same programming environment. Automatic           
capturing of provenance information about a MIMD program and its runtime           
environment remains an open research topic. 
 
Because metadata can grow to be extremely large, we must understand what needs             
to be captured and what can be discarded, so that resource constraints can still be               
met. For example, scientists might want to capture the different types of algorithms             
used for analysis to help them understand accuracy vs. power tradeoffs, leading to             
huge amounts of performance information captured on each process. In the           
combustion UQ use case, capturing the regions of interest that then help identify             
regions of influence is critical for a complete understanding for the final behavior of              
the system [Carey2014]. Metadata also grows when hundreds of variables are           
involved, as in the XGC1 case, and researchers want to keep information at the              
granularity of MPI processes. 
 
Scientists generally want full control over their data, and this desire also extends to              
metadata. As a result, many applications scientists have developed their own way of             
capturing and encoding their metadata. However, the pressure to produce verifiable           
provenance information may lead many more of these application scientists to use            
automated tools. In order for such a tool to be adopted by scientists, it must be easy                 
to use and allow sufficient flexibility for users to specify exactly what information to              
capture and store. Additionally, the following features are strongly desired: 
 

• The provenance capturing system needs a durable way of associating the           
metadata with the data. Under current data management systems, when data           
files are moved, the associated metadata is often lost. 

• The system should accurately capture information about the programming         
environment and the runtime environment. 

• The information captured must be easily searchable or otherwise accessible. 
• The system must provide useful feedback about errors and faults.          

Furthermore, such feedback should be instructive in helping users recover          
from the errors. 

4.7 Summary 
 
Mission scientists see the SSIO community as facing a number of exciting challenges,             
summarized here in terms of the five Vs presented earlier in this section:  
 
1. Fast data access is essential to large data-intensive applications. High-level          

self-describing data formats are critical to allow concerted efforts to improve the            
SSIO system and to best use burst-buffer technologies and deeper I/O           
hierarchies. (Volume, velocity, and variety) 

2. Effective metadata management is critical in allowing vast amount of          
high-velocity data from different sources to be used effectively together to           
generate meaningful science results. (Variety, velocity, volume) 
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3. Provenance capture is essential. As application workflows grow in complexity          
and variety, capturing provenance becomes critical for future understanding of          
what occurred throughout all phases of data generation and analysis. (Veracity,           
value) 

4. In situ data services/frameworks are needed that can co-locate tasks (on node,            
off-node, and on external resources) and can be specialized for specific           
applications. (Velocity, volume, variety, value) 
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5 Computer Science Challenges 
 
A number of contributors to the overarching challenge of providing high-bandwidth,           
low-latency, storage access across multiple tiers are discussed. In toto, the           
sub-sections below are intended to capture the breadth of the problem, with each             
detailing the particulars and magnitude of the particular, classified, regions. 
 

5.1 Hardware/Software Architectures 
 
Architectural changes in Exascale and post-Exascale HPC platforms raise new          
challenges for effective SSIO hardware and software architectures. The generation,          
analysis, and management of multiple extreme-scale data sets will place increasing           
stress on the storage capabilities of existing HPC software, platforms, and facilities.            
Increases in working set sizes, simultaneous analysis of simulated and experimental           
data, and an increased understanding of data retention times are enough to            
motivate a need for improved hardware and software architectures for storing and            
accessing scientific data. When combined with the emergence of new storage and            
networking technologies, it is clear that fundamental changes in HPC storage           
architectures offer the opportunity to significantly reduce time to scientific insight. 
 
The successful deployment of NAND Flash storage media within HPC platforms and            
the resulting performance improvements in common scientific workflow elements         
such as checkpoint/restart demonstrate how focused community research efforts         
can impact broad swaths of the simulation science community. Multiple years of            
research efforts [Bent2012, Liu2012a, Barton2014] led to the successful         
deployment of Flash media into HPC platforms at multiple DOE facilities [Cori2015,            
Trinity2015, Sierra2017, Summit2017]. Further transformational opportunities      
likely exist in leveraging emerging media types within new and existing scientific            
workflows and re-architecting storage subsystems and interfaces to better match          
existing media characteristics.  
 
In order to better understand the challenges and opportunities that exist within            
hardware and storage architecture we have divided the research and development           
space into six coarse but essential areas: storage media and interfaces, network            
technologies, accelerators and active storage, resilience, advanced systems        
management, and security. Cross-cutting research across these areas may be          
required for some projects. For example, emerging storage media types exhibit           
different resilience characteristics in the forms of wear rates, bit error rates (BER),             
and data retention times. This organization is provided to systematically explore           
areas within software and hardware architectures and describe emerging         
opportunities and challenges. 
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5.1.1 Storage Media and Interfaces 
New storage media typically present new performance levels, new performance          
asymmetries (e.g. the difference between random access and sequential access) and           
new economies of scale that accelerate time to scientific insight when deployed            
effectively into HPC platforms and facilities. New storage interfaces instead require           
the revisiting of past assumptions about how best to access storage devices and             
ensure that each layer’s assumptions correctly match the characteristics of the           
underlying devices. The combination of both techniques presents opportunities to          
transform HPC storage systems and greatly accelerate time to scientific insight. 
 
State of the Art 
The use of emerging storage media technologies throughout the data center is an             
area of immediate interest. Evolutionary changes include the changing asymmetry          
between read and write track widths in some modern hard disk drives            
[Feldman2013, Abghayev2015], the emergence of energy-assisted magnetic       
recording (EAMR), the increasing densities of 3D NAND Flash, new Flash           
architectures [Samsung2017b], and the use of volatile memory as the backing store            
for reliable storage systems. Specialized file systems targeting hard disk head-size           
asymmetries [Kadekodi2015, Manzanares2016, Abghayev2017], flash     
read/write/erase asymmetries [Gal05], and distributed in-memory stores       
[Rumble2014, SDA2018] have demonstrated that significant performance       
improvements can be achieved by leveraging the underlying device characteristics          
carefully. Changing economies of scale also motivate the use of Flash media in long              
term storage tiers [Gupta2014]. 
 
Disruptive changes in the storage media landscape include the availability of fast            
non-volatile memory devices such as 3D XPoint® and the availability of ultra-dense            
DNA-based storage solutions. Byte-addressable persistent storage such as 3D         
XPoint® [Optane2018, QuantX2018] and Resistive RAM [Lu2016] has been an area           
of recent research interest and specialized file systems [Xu2016, Wu2011] and data            
structures [Coburn2011, Venkataraman2011, Zhang2018] have been developed to        
exploit performance much greater than existing solid-state storage media. DNA          
storage, while further from commercialization, offers transformative opportunities        
in archival storage with low-cost media, thousands of years of data durability, and             
nearly free data duplication [Bornholt2016, Organick2018, Milenkovic2018].       
Similarly, advances in light-based media offer promise as a dense storage media            
replacement for traditional spinning disks [Anderson2018]. 
 
Previous efforts in improving storage media interfaces developed the object storage           
paradigm, notable for demonstrating the fundamental performance improvements        
achievable by allowing storage devices to make device-aware space         
allocation/deallocation decisions [Mesnier2003] and used in multiple HPC storage         
systems [Braam2004, Nagle2004]. Block-based interfaces such as SCSI Block         
Commands [SCSI2018], NVM Express [NVME2018a], and the current Linux DAX          
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implementation [DAX2018] continue to be the dominant mechanisms for reading          
and writing data to and from storage media. Emerging storage interfaces that take             
advantage of byte-addressable media characteristics such as the SNIA NVM          
Programming Model [SNIA2017, PMDK2018] or the translation and logging logic          
within Flash devices [Samsung2017a] are becoming more commonplace. 
 
Challenges 
Rapid changes in storage media and interfaces creates several challenges in creating            
scalable storage systems for both high-performance and archives: 

● Challenges exist with incorporating byte-addressable media into distributed        
HPC storage systems as network-based interfaces to persistent memories         
may not be able to leverage the byte-addressability advantages effectively. 

● The extent of the read and write asymmetries for emerging medias such as             
3D XPoint® and DNA stores are not widely understood and techniques to            
exploit those asymmetries are not well studied. 

● New media types introduce new economic models for HPC platforms and           
facilities that presents challenges and opportunities in designing HPC storage          
tiering and design. 

● New media interfaces provide opportunities to eliminate the inefficiencies of          
accessing block interfaces at sub-block sizes or non-block alignments, but          
leveraging new interfaces may require re-visiting assumptions throughout        
the storage stack. 

5.1.2 Networking Technologies 
HPC networks continue to improve in performance dramatically and pose          
significant challenges for systems designers attempting to provide storage         
performance capable of saturating local network interfaces. The ability to aggregate           
tens of GB/s of network bandwidth into a single storage node requires a matching              
amount of storage bandwidth to produce an economically efficient storage system.           
Additionally, storage systems typically require network abstraction layers that         
allow remote access across a variety of platform interconnection networks and           
dedicated storage networks. Multiple approaches to leveraging the capabilities in          
modern interconnection networks and providing broad network compatibility exist         
within HPC research efforts.  
 
State of the Art 
Modern HPC interconnects currently provide approximate 1µs latencies and         
throughputs of 100-200Gbps [Alverson2012, BXI2017, HDR2018 , OPA2018] with         
most technologies planned to double performance in the next several years.           
Commodity Ethernet provides similar bandwidths and similar throughput        
improvement plans but with moderately worse multi-hop latencies. HPC topologies          
are typically dominated by efficient topologies such as Dragonfly [Kim2008] and           
high-radix tori/CLOS [Scott2006], though I/O backbone networks that connect         
parallel file systems to multiple HPC platforms are more commonly implemented           
with fat tree topologies (possibly oversubscribed). 
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One area of recent innovation has been the low-level networking libraries used to             
leverage network devices from user-space [MacArthur2017, Shamis2015,       
Goodell2015, GenZ2018]. These libraries are typically used below a network          
abstraction layer provided by MPI or by other high-level networking libraries           
[Soumagne2013]. While HPC interconnects typically provide fewer management        
capabilities as compared to modern Ethernet infrastructure, these libraries are able           
to leverage common HPC networking features of potential benefit to SSIO, such as             
support for remote memory access (RMA), atomic remote memory operations          
(AMO), asynchronous progress engines (APEs), virtual lanes, and quality of service           
(QoS) mechanisms. New storage-specific network operations to accelerate data         
caching [Jin2017] and key-value storage [Li2017] have also been recently explored.  
 
Finally, networked storage protocols including SRP [SCSI2018], iSER [Kim2003],         
NVMEoF [NVME2018b] have been used within HPC facilities to provide redundant           
copies of important data sets (e.g. mirroring PFS metadata) and export block            
interfaces from existing and emerging storage enclosures. 

5.1.2.1 Challenges 
Future HPC systems will incorporate multiple levels of storage distributed across           
one or more networks with potentially complex topologies and thousands of storage            
endpoints. Networks on these systems will likely present significant new          
capabilities including the following:  
● QoS via throttling, performance isolation, and co-scheduling with preemption 
● Advances in RMA and AMO operations, potentially end-to-end from compute          

memory to the storage device  
● Support for asynchronous operations and independent progress of        

communication  
● Collective communication support and the ability to embed computation for          

data reduction or reorganization within networking endpoints and the         
switching hierarchy  

● Leveraging direct access to storage devices efficiently and effectively within          
HPC platforms.  

Many of these capabilities will be researched outside the context of SSIO, but the              
SSIO community should be ready to incorporate or leverage these advances where            
appropriate. SSIO-specific R&D should be encouraged, allowing co-design of         
network and storage technologies as appropriate.  

5.1.3 Active Storage and Accelerators 
As local and distributed storage systems have been augmented with advanced           
features such as compression, distributed erasure codes, and checksums, the limited           
spare compute and memory resources available on compute and storage nodes           
indicate that accelerators may be essential in achieving high-levels of storage           
performance density. Interest in executing additional user-specified tasks near the          
data (data reductions, statistical summaries, etc.) continues to motivate research          
into active storage. 
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State of the Art 
Active storage aims to expose computation elements within the storage          
infrastructure for general-purpose computation on data. Active storage has been          
motivated by the increasing computational capabilities within storage devices and          
the ability to reduce data movement (filtering) and storage requirements          
(ephemeral views) by embedding computations in the storage device. Active storage           
has enjoyed over a decade of active research [Riedel1997, Amiri2000, Son2010].           
The current state of the art includes the extension of active storage concepts to the               
device level (T10 OSD) [Mesnier2003] and HPC parallel file systems [Felix2006,           
Piernas2007]. Programming models include streaming [Acharya1998, Felix2006,       
Qin2006, Piernas2007], remote procedure calls [Riedel1997], and object-oriented        
models. While general-purpose computation has been explored in active storage,          
more limited forms of computation have also been investigated, including          
ephemeral views [Ma2003] and filtering [Riedel1997]. More recent work has looked           
at mechanisms enabling the user to run predefined computations [Felix2006] that           
are of a more general-purpose nature but with well-known computational          
characteristics similar to stored procedures in databases, as well as extending the            
MPI-IO interface for analytics shipping [Son2010]. Still other research has proposed           
applying active concepts in the context of Flash devices [Boboila2012]. 
 
Challenges 
A number of significant challenges exist in active storage, particularly as it relates to              
HPC environments: 

● Embedding computation within an HPC storage infrastructure brings about         
challenges in data and programming models for these environments,         
including security issues (e.g., how to control access of embedded          
computation) and resource management challenges (e.g., how to balance         
service between active and passive operations). 

● Changes in CPU capabilities, networking and storage device speeds may          
fundamentally alter the types of computation that can be effectively          
amortized while processing a data stream (e.g. fundamental operations may          
be effectively offloaded into storage while more complicated analysis tasks          
may only be appropriate for a single active storage architecture). 

● Exposing acceleration and active storage capabilities with flexible        
programming interfaces that integrate well with existing HPC I/O         
middleware. 

● The use of storage and networking devices that include acceleration          
technologies is one promising technique for providing scalable, generally         
useful active storage capabilities -- however the efficacy of this approach is            
still not well researched at scale.  

5.1.4 Resilience 
The differentiation of data retention times for the phases of scientific workflows has             
demonstrated the need for multiple resiliency models within HPC storage          
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infrastructure. Temporary and intermediate data sets may leverage different         
protection schemes than the highly-processed output data used for scientific          
visualization. Similarly, storage systems maintaining data for days or weeks          
typically use different data protection schemes than storage systems maintaining          
data for months or years. 
 
State of the Art 
Resiliency in SSIO has been an active area of research, spanning techniques to             
provide resilience to individual component failures [Patterson1989, Rizzo1997] up         
to the application [Zhao2004, Chang2008] of generalized algorithms [Birman2007,         
Lamport2001, Elnozahy2002] for fault detection and recovery. Numerous strategies         
have also been employed for data availability, including network RAID/erasure          
encoding, consensus/quorum protocols [Ongaro2014], and multiple forms of data         
replication [Cidon2013]. While significant work has focused on resiliency of the           
underlying storage server infrastructure, some efforts have also focused on          
end-to-end data integrity [Zhang2010], although only limited work has been done in            
this area specifically for HPC environments. Above the storage system level, some            
work has been done to explore fault-tolerant runtimes and application-level          
resiliency strategies [Hargrove2006, Sankaran2005], but the scalability of such         
techniques remains in question. Fault-tolerant programming models, such as         
MapReduce [Dean2008] and Legion [Bauer2012], and the application of the CAP           
theorem and peer-to-peer systems principles are also gaining momentum and          
adoption within the scientific HPC community.  
 
New stacked DRAM technologies provide extremely high levels of memory          
bandwidth and have the opportunity to provide high performance buffer operations           
in HPC storage systems; but also come with new reliability models that require new              
data corruption protection schemes[Jian2016, Gupta2018]. For example, the HDF5         
middleware library provides checksums for files [HDF2018], but not the end-to-end           
data protection that may be necessary for these new memory technologies. 
 
Challenges 
Next-generation HPC systems will raise significant resiliency challenges for the SSIO           
community. While some resiliency challenges will crosscut with the broader          
resource management, networking, application, and parallel programming       
environment communities, SSIO-specific resiliency challenges will remain.  

● New storage media, tiered storage organizations, increasing storage        
capacities, and tighter margins in component designs (silent data corruption)          
will necessitate significant R&D in SSIO resiliency to account for device and            
data properties. 

● Leveraging new memory technologies inside of storage systems without         
memory protection strategies like ChipKill. 

● Providing appropriate levels of performance and resiliency for persistent         
data within the storage hierarchy. 
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5.1.5 Advanced Storage Systems Management 
Bursty I/O requirements and bulk-synchronous, write-dominant HPC workloads        
have traditionally motivated a research interest in advanced storage management          
infrastructure for HPC platforms. Efficient purging toolsets, statistical summaries,         
and data layout tuning are some examples of the advanced management           
infrastructure common within HPC facilities. The increasing popularity of machine          
learning as a tool within the systems community introduces new possibilities in the             
application of statistical models to storage systems management. Autonomous         
storage systems capable of responding to cyclic workload demands, policy-driven          
toolsets capable of managing resource sharing, dashboards for monitoring the          
intersection of scientific workflows and storage systems, and new interfaces for           
enabling  
 
State of the Art 
Autonomics refers to the ability of a system to adapt to a changing environment,              
such as tuning for higher performance in response to a change in workload or              
redistributing work in response to a faulty component. In SSIO, autonomic           
approaches are potentially useful for management, monitoring, and optimization in          
response to user behavior. Multiple efforts have identified models that provide           
forward predictions for storage layout decisions [Behzad2014a, Behzad2015,        
Liu2017]. There have also been efforts to build storage policy engines that enable             
dynamic policy switching based on model predictions [Sevilla2015]. Low-level         
storage management and monitoring protocols, such as SMART [Allen2004] and          
Swordfish [SNIA2018], are integrated and leveraged at many HPC facilities, but are            
not yet used for policy management. 
  
Significant efforts exist within storage systems management to accelerate common          
scientific workflow tasks. Parallel data movers exist for both wide area networks            
[cite Globus, BBCP, XDD] and data movement within data centers storage tiers            
[LaFon2012, Wang2016, Pftool2018]. Similarly, several external indexing and policy         
engines exist for implementing common HPC policies such as storage accounting           
and purging [Declerck2014, Bonnie2018]. 
  
Finally, systems for providing quality of service policies for networking and storage            
systems have been an area of frequent research interest. Efforts for quality of             
service guarantees for both storage devices [Wachs2009] and distributed storage          
systems [Gu2011] have been proposed, but not widely adopted by HPC facilities.            
Modern software-defined networking controllers [ONF2018a, ONF2018b] provide a        
substantial set of user-programmable quality of service guarantees for Ethernet          
switched networks and are beginning to see deployment in HPC facilities. 
 
Challenges 
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The increasing complexity of SSIO systems introduces multiple challenges in the           
space of possible configurations and complicated interactions created by diverse          
sets of scientific workflows: 

● Toolsets for implementing policies and managing data are well-suited for the           
systems and problems for which they were defined, but are typically not            
modular or composable in ways that address complex tasks. 

● Interactions between storage system components and tiers within storage         
systems are subtle, complex, and often lead to unexpected behaviors 

● Policy engines, autonomic or otherwise, that are able to explore the system            
configuration space and measurably improve reliability, performance,       
and/or TCO for storage systems. 

5.1.6 Security 
Security continues to be a pressing concern within HPC platforms and facilities. As             
security monitoring techniques have trended toward deep packet inspection and          
continuous security audits the lack of end-to-end security within HPC storage           
systems continues to be an apparent shortcoming. The issues of balancing           
authentication, secure access control, secure data transmission, and efficient         
performance have traditionally been performed by HPC facilities, but research into           
this area is still needed. 
 
State of the Art 
Security for storage systems in HPC is typically implemented by using traditional            
UNIX users or groups and access control lists. Specifically, this security is            
implemented via trusted software running in the kernel on storage clients, in            
conjunction with one or more trusted servers. Data is not typically encrypted at rest              
or over the wire. 
 
Numerous, more advanced security approaches have been investigated in the          
context of HPC but not productized. These include a technique for fine-grained            
encryption of large datasets [Li2013] and methods for aggregating security          
operations [Leung2007]: authorizing multiple client-file pairs in a single operation          
and allowing a representative client to act on behalf of a large group (e.g., the               
processes in a parallel application). Scalable methods for security in large-scale HPC            
storage systems were also investigated as part of the LWFS project [Oldfield2007].            
Security partitioning for secure and efficient search using Bloom filters has been            
explored [Parker-Wood2010] as well as using a keyed hash tree [Li2013] and            
scalable authorization mechanisms [Leung2007]. 
 
Challenges 
Emerging storage system architectures create a number of challenges in applying           
the current state-of-the-art security strategies:  

● Additional layers in the storage hierarchy (i.e., nonvolatile storage layers,          
“campaign” or “data lake” storage layers between the parallel file system and            
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archive) mean that the security system will need to control access to multiple             
tiers and vendors.  

● The dependence on node OS or network hardware for enforcement of           
security needs to be relaxed: there must be ways of preventing information            
leakage from nonvolatile storage located within the compute fabric or          
between jobs running in the system without reliance on the kernel for            
enforcement, since the kernel itself is outside application control yet          
increasingly subject to compromise.  

● Security must be supported at a range of granularities that may leverage            
knowledge of file layout (e.g., HDF5 or netCDF).  

● New security solution must be decentralized and allow fast paths for           
common operations; security needs to be as performance-transparent as         
possible.  

● Security solutions should integrate with resource management to deter         
denial of service (e.g., consumption of available storage space or bandwidth). 

 

5.2 Metadata, Name Spaces, and Provenance 
 
As the complexity and scale of systems, applications, and data continue to grow,             
there is an increasing need to develop robust capabilities that enable both systems             
and users to extract, search, and track lineage for the massive volumes of data              
generated for scientific purposes. While some of these capabilities exist today, they            
are typically deployed through a set of ad hoc tools (e.g., scripts that use UNIX grep,                
find, and awk) that are not designed for the scale or complexity anticipated for              
large scientific data sets. In general, managing large data sets on our existing             
systems requires a level of discipline and organization by the user that is extremely              
time consuming, if done well, and error prone if not. In addition, requirements for              
repeatability, application workflow management, and data curation (among others)         
are driving the need for robust and integrated tools for provenance capture and             
management with extended features that allow exploration of the provenance          
information for debugging, anomaly detection, visualization, and other purposes. 
 
As of October 1, 2015, the DOE policy [DOE2018] on data reproducibility requires             
that all funded research have an associated Data Management Plan (DMP). Those            
DMPs must “describe whether and how data generated in the course of the             
proposed research will be shared and preserved”, and DOE offices must assess the             
long-term needs for data sharing “about three years after this policy goes into             
effect.” We are now (as of mid-2018) in that timeframe and the SSIO community              
should be an active participant in ensuring that long-term science data sharing is             
possible in a way that enables the greatest value to science communities. The             
solutions to the metadata, name spaces and provenance challenges described below           
should support those goals, as well as the needs of the scientists producing the              
original data. 
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5.2.1 Metadata 
Metadata, in this context, refers generally to the information about data as well as              
the tools and techniques in an SSIO storage system to support the storage and              
retrieval of such information. It may include traditional user-visible file system           
metadata (e.g., file names, permissions, and access times), internal storage system           
constructs (e.g., data layout information), and extended metadata in support of           
features such as provenance or user-defined attributes. Metadata access is often           
characterized by small, latency-bound operations that present a significant         
challenge for SSIO systems that are optimized for large, bandwidth-intensive          
transfers. Other challenging aspects of metadata management are the         
interdependencies among metadata items, consistency requirements of the        
information about the data, and volume and diversity of metadata workloads. 
 
State of the Art 
While most HPC file systems support some notion of extended attributes for files,             
[Lustre2002, Welch2008, Weil2006] this type of support is insufficient to capture           
the desired requirements to establish relationships between distributed datasets,         
files, and databases; attribute additional complex metadata based on provenance          
information; and support the mining and analysis of data. Some research systems            
provide explicit support for searching the file system name space based on            
attributes [Aviles-Gonzalez2014, Leung2009], but most of these systems rely on          
effective indexing, which has its own scalability and data-consistency challenges          
[Chou2011]. 
 
Investigations have been made into the use of integrated databases for metadata            
storage [Johnson2014], but this technique has not been applied in an HPC storage             
system. Metadata-rich science formats such as HDF5, netCDF, ROOT, and ADIOS           
have been integrated into science data servers, such as SciServer [SciServer2018]           
and science community “web-portals” [ESS-DIVE2018, DES2018] that may provide         
higher-level semantic metadata that enables science communities to publish, search,          
and share data sets more productively, and should be investigated further. 
 
Scalable metadata management for HPC systems has been a known issue for more             
than a decade; and while many systems have some support for multiple metadata             
servers [Carns2000, Weil2006], the additional servers often are used for fail-over,           
not performance [Lustre2002]. Truly distributed metadata servers with strong         
consistency semantics, such as Ceph’s MDS [Weil2004, Weil2007] and GIGA+          
[Patil2011], are either focusing on ease of load balancing using hashing (GIGA+) or             
aiming for improved locality by dynamic subtree partitioning (Ceph’s MDS). More           
recent object-storage systems scale metadata management across a large set of           
storage devices [Aviles-Gonzalez2014]. Others manage parts of the metadata in the           
clients to achieve scalability [Zheng2014, Weil2006, Ren2014] but rely on relaxed           
consistency semantics to achieve performance. 
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Frameworks for harvesting metadata from science data have been produced in           
academia [Gupta2010, Parker-Wood2013, Devarakonda2010] but have not been        
adopted by broad science communities. Machine learning techniques are beginning          
to be applied to large science archives [Orphus2018], but are in their infancy.             
Techniques such as these may enable DOE DMP goals to be achieved in an              
automated and scalable fashion, with minimal effort by scientists. 
 
Challenges 
Workshop attendees identified a number of nontraditional use cases for the           
metadata management system. These include multiple views of the metadata to           
support, for example, different views at different levels of the name space hierarchy             
and different views for different users’ purposes; user-defined metadata;         
provenance of the metadata; and the ability to define relationships between           
metadata from different experiments (e.g., to support the provenance use case). 
 
If we expand what can be stored as metadata, how do we ensure that all metadata                
associated with a dataset remains with the data? Particular concerns were about            
metadata storage at the different storage tiers, storage and recovery of metadata            
from archive, and the transfer of data sets to different storage systems. 
 
Hashing a namespace balances the load but does not account for locality. Fixed             
namespace partitioning accounts for locality but creates a load imbalance. How can            
we combine the two or conceive of better techniques? How do we scale distributed              
and multi-objective load-balancing algorithms across exascale-sized metadata       
services that maximize caching and wear- or power-leveling? 
 
Currently, the end user explicitly enters a large portion of metadata. As workflows             
grow in size and metadata becomes more complex, it is highly desirable to automate              
the capture of most metadata about the workflow and provenance. A number of             
attempts have been made at the fairly coarse level [Schissel2014]; however, as            
parallel jobs on a supercomputer become MPMD (multiple program multiple data)           
or composite workflows, there is a need to capture the complex dependencies            
within a single parallel job. Since a job on an exascale machine may have              
1-billion-way concurrency, the metadata associated with a simple parallel write of a            
checkpoint file could be large and complex, not to mention the dependencies and             
interactions among the different components of a billion interrelated parallel tasks.           
The volume and velocity of the metadata associated with such a fine-grained            
metadata could present a serious challenge to manage. 

5.2.2 Namespaces 
The namespace is the view or perception of data to the user. The subject includes a                
broad range of topics, including discussion of data-model specific namespaces,          
time-oriented naming schemes, consistency of naming across systems and storage          
hierarchies, and search and discovery in large namespaces. 
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State of the Art 
Previous work has focused on improving the scalability of access to traditional,            
POSIX-based namespace hierarchies [Weil2004, Weil2006, Patil2011, Moore2011].       
More recent efforts have investigated how to manage scientific data in the context of              
object-oriented namespaces [Barton2013, Goodell2012]. The grid computing       
community has also made significant practical contributions to the problem of           
federating namespaces across facilities [Baru1998]. 
 
Composing data dynamically into “views” has been performed by traditional          
databases for decades and is being explored for large science data as well [cite              
Kryza2015]. Approaches that index metadata for data sets and present a scalable            
search mechanism to return results (see earlier science data servers / web-portals            
citations in section 5.2.2) are also promising. 
 
Challenges 
The existing work generally is hierarchical and focused on file systems. A number of              
researchers, however, have argued that such hierarchical namespaces impose         
inherent limitations on concurrency. Eliminating these limitations with object         
storage systems or higher-level systems could be the fundamental breakthrough          
needed to scale namespaces to billion-way concurrency. 

5.2.3 Provenance 
 
Provenance is broadly defined as metadata that describes the lineage of data. In             
simple terms, provenance contains details on how a particular file was generated;            
these details can be used to reproduce scientific results. For large-scale           
computational problems, the information can include the origin of data (sometimes           
experimental data); algorithms, libraries, and associated parameters and versions         
used for processing and transforming the data; details of the systems used for these              
transformations such as memory requirements, number of resources, and         
system-software; and perhaps even ownership or user attribution for the various           
steps performed. The most discussed use case for provenance information was to            
support re-use of data for validation of published results, since the Office of Science              
Statement on Digital Data Management now requires projects to provide access to            
data for this purpose, but the group also discussed numerous other use cases such              
as understanding performance, system, and software variance; certification of         
results; and forensic analysis useful for debugging, auditing, and security. 
 
State of the Art 
Most of today's scientific data sets have little to no provenance information at all.              
Provenance information that does exist is collected and managed in an ad hoc way              
through custom-developed scripting tools (e.g., Perl or Python) with no direct           
support for managing this data in the storage system. In these cases, the quality of               
the provenance data is directly related to the discipline and management skills of             
the data owner. 
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An important aspect of provenance information is how it relates to application            
workflows. Work on automatic extraction, management, or analysis of provenance          
data has begun in isolated research groups [Schissel2014, Davidson2008,         
Muniswamy-Reddy2006] and is available in many workflow automation tools such          
as Kepler/Komadu [Indiana2014], VisTrails [Callahan2006], and Pegasus       
[Mandal2007]; however, such tools are not in wide use and are often not deployed              
on HPC systems. Most of these tools rely on third-party databases and custom             
designed tools [Davidson2008]. While this approach is effective for managing          
workflows in a single environment, the ability to encapsulate entire datasets and            
associated provenance for archival purposes is problematic. In addition, no effective           
way exists to integrate provenance information for workflows that span multiple           
systems. 
 
High-performance computing facilities are also using tools such as ALTD          
[Fahey2010] to collect provenance information for more traditional applications as          
well. As is the case in workflow systems, however, these tools are not integrated              
with the SSIO storage ecosystem. 
 
Preliminary work has investigated the use of graph data structures [Ames2011,           
Dai2014] for provenance storage, but these concepts have not been fully realized at             
scale. 
 
Although further opinions have been published [Hills2015, Mikdadi2017]        
emphasizing the importance of provenance tracking for science data and bemoaning           
how much effort goes into cleaning up previously published data [Delgado2016],           
very little effort appears to have been made in this area during the last few years. 
 
Challenges 
Existing workflow tools manage all provenance data internally. There is no           
storage-system support that enables the association of provenance-related        
metadata with scientific datasets. As datasets increase in size and complexity, the            
ability for tools to manage the files, databases, and other storage by-products will             
become a significant challenge without implicit storage-system and        
operating-system/library support. 
 
The size and complexity of mining and analyzing provenance data could become an             
extreme-scale computing problem itself. Use cases for mining and analysis include           
debugging, anomaly detection, and visualization. One challenge identified was the          
need to identify all datasets derived from an application that used a particular             
version of a (known-buggy) library so they could be removed from the archive and              
rerun. 
 
Workflows that span multiple systems also merit attention. For example, consider a            
workflow consisting of preprocessing a large collection of data from a scientific            
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device. The results are consumed by a large HPC simulation, and the results of the               
simulation get transformed into a graph and analyzed on a graph-analytics system.            
The provenance information should include the complete description of these steps;           
but there is no formal way to construct, capture, and manage this type of data in an                 
interoperable manner.  
 
A complete description of steps may not suffice to reproduce a simulation. The setup              
of a simulation depends on the particular environment, which continually changes,           
often irreversibly (e.g., after the application of security patches). Capturing and           
understanding the impact of changes to the computing environment are important           
aspects of using provenance data for reproducibility. 
 

5.3 Integrating With and Supporting Science Workflows  
In the exascale era, we have seen a significant growth of applications which             
incorporate some form of workflow technology in their daily routine of running a             
scientific campaign. Scientists need to be methodical about how they design their            
computational experiments when running their large scale experiments since they          
are limited by the amount of time they can compute and are then left to make                
choices about how they spend their time computing. Typically they make choices            
about the potential cost of I/O to storage, and which analysis and visualization             
routines they integrate into their code for in situ analysis and visualization. 
  
In the extreme-age of computing, computational science is coupled with          
experiments/observations to validate computational models and predict and        
control them. This intricate process of “validation” consists of a mixture of            
inter-related online analysis workflows along with offline post-simulation        
processing workflows. These online and offline workflows are coupled together in a            
scientific campaign. An illustrated example is shown below. 
  
Research and development in SSIO is critical towards enabling scientists to 1)            
Express their online and offline workflows (composition) and allow the workflows           
to be captured and saved (provenance) with their scientific campaign          
(Programming Model Integration); 2) Integrate and execute sub-routines for         
coupling their main computational code with their other codes, such as           
visualization software and data analytics codes implemented in a mixture of           
languages, all in a resilient and predictable way; 3) Orchestrate their workflows in             
a dynamic, resilient, and predictable fashion; and 4) Describe and place the            
generated data for later post processing during the data’s lifetime in the scientific             
campaign, across the multiple tiers of storage and memory hierarchies. 
 

5.3.1 DOE Extreme Scale Use cases  
In this section, we capture three important DOE application use cases which are             
already generating a tremendous amount of data (PB’s per scientific campaign) and            
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are in need for the SSIO community to research, develop and create new software to               
cope with their complex workflows. Many of these findings have been reported in             
the NSF stream workshop (cite), the future of scientific workflows workshop (cite),            
as well as within several of our communities 
.

 
 
5.3.1.1 The above figure illustrates a complex set of processes to couple two fusion              
codes on a LCF, along with reducing, analyzing, and visualizing the results. 
 
The first application scenario is the online coupling of simulation codes and            
visualization codes in whole device modeling. In this scenario, a code which models             
core transport in tokamak cores is coupled with a code which models wall physics              
and edge plasma-wall interactions. Coupling of core and edge simulations is           
necessary for more accurate whole device modeling. As is seen in the figure above,              
this scenario illustrates the new and growing to integrate, execute and instrument a             
variety of tasks in a workflow for on-line analysis and coupling. In addition to              
exchanging data through a code coupler software, each simulation code is coupled            
to a variety of analysis, visualization and data reduction codes. The feature            
extraction and visualization codes are used to detect and monitor simulation output.            
Because these simulations can take long time to execute, it is necessary that             
coupling with analysis and visualization codes be done dynamically. That is,           
scientists should be able to dynamically start running a group of analysis and             
visualization codes and attach them to output from the simulations. 
  
The amount of data generated by these simulations on extreme scale machines often             
exceed the amount of space allocated to a scientific campaign. Moreover, analyzing            
all of the data at the highest resolution can require significant computational power             
and render near real-time or interactive rates infeasible. Hence, data exchanged           
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between simulations and analysis codes as well as output directed to the storage             
system may be coupled to reduction methods to reduce data volumes. 
  
This type of online coupling also illustrates the need to monitor performance to             
make adaptive changes when running a complex workflow. As these simulations are            
executed over long periods of time, the computational workload of individual           
simulations may change over time. In addition, dynamic coupling and decoupling of            
analysis codes and visualizations introduce variations in the workload. 
  
This type of workflows are becoming more diverse as applications invest in Machine             
Learning (ML) frameworks (e.g. TensorFlow) and integrate ML workflows with the           
application’s primary workflows. Another growing requirement is the integration of          
experimental data with simulation data for validation and prediction of their           
scientific results. 

5.3.2 Workflow Composition 
 
The capacity and associated bandwidth of today’s file systems are straining to store             
ephemeral intermediate data in workflows. The ongoing integration of SSD devices           
into compute infrastructures, both as burst buffers and as extended memory, offers            
opportunities to enhance science workflow productivity. Interfaces to enable the          
creation and orchestration of workflows over complex SSIO protocols requires new           
tools, whether as programmatic interfaces, new libraries, schedulers, or other          
approaches. In addition, interfaces to extended memory hierarchies will be required           
that allow for the discovery of system characteristics and the integration of data             
from multiple storage and compute systems in a workflow.  
 
State of the Art 
While significant research has been performed in the area of programming models            
for HPC [Draper1999, Chamberlain2007, Charles2005], relatively little research        
has focused on providing better programming model support for HPC SSIO and            
imparting more information from the programming model to lower-level storage          
system interfaces. Other communities outside HPC have conducted R&D (e.g.,          
MapReduce [Dean2008]) to better integrate storage within programming models         
and have seen widespread success. Further studies have sought to better           
understand these programming models and their connections to HPC and MPI [e.g.,            
Plimpton2011, Hoefler2009, Ekanayake2008], including research to better       
understand their relationship to parallel file systems [Tantisiriroj2011]. 
  
Some research has been performed on extending the programming model to           
incorporate processing capabilities within the storage system. Active Disks         
[Acharya1998, Riedel2001] investigated programming models, interfaces and       
runtime support for pushing computations near disks. Active storage has been           
investigated in the context of HPC applications [Son2010] and more generally in the             
context of object-based storage [Qin2006]. Recently, this concept was taken further           
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[Jin2013], looking at methods for passing information from applications to the           
runtime (via the programming model) so that tradeoffs in the performance, power,            
and resilience space can be effectively evaluated and decisions made. 
  
Researchers also have been investigating the applicability of task-based         
programming models such as Legion [Bauer2012] for use in HPC systems and have             
begun exploring how to manage a deepening memory hierarchy. To date, however,            
these efforts have not focused on providing better support for SSIO. 
  
Scientific workflow tools exist for desktop (Kepler [Altintas2004]) and grid          
scheduling systems (Pegasus [Deelman2002]). Some workflow engines are built         
closely with schedulers such as DAGMan and HTCondor. They have also been            
branching out into collaborative efforts such as MyExperiment.org [DeRoure2008]         
powered by workflow engines such as Taverna [Wolstencroft2013]. These systems          
are very high level and are designed to abstract concepts of computation and data              
movement into nodes in a graph for specific scientific applications. 
  
Some efforts have been made to extend work on scientific workflows to the storage              
layer [Bugra2008]. For example, Swift [Wosniak2014] is a popular big data           
workflow engine gaining some traction in HPC-related areas. Python-based engines          
such as Dispel4Py [Filguiera2014] and FireWorks [FireWorks2013] are becoming         
predominant because of the ease of doing data type discovery. Workflow           
performance optimization also requires information about the status and         
availability of resources, at near-real time, in order to optimize execution of            
workflows [Wieczorek2009]. 
 
Challenges 
Future HPC systems will incorporate multiple levels of memory and storage,           
including high-bandwidth designs, NVRAM, DRAM, disk, and tape. This will provide           
opportunities for speeding up data intensive workflows significantly but will          
introduce a more complex storage system. Programming models and interfaces that           
do not expose any information about the storage hierarchy to the programmer and             
rely solely on the operating system and hardware to transparently manage the            
hierarchy, will lead to sub-optimal performance gains from such hierarchical          
storage configurations. Programming model support is needed that would provide          
programming interfaces and abstractions which allow for query of the          
characteristics, state and workload of a storage level and placement of data at a              
specific level and on a specific storage unit within a level. Such interfaces and              
abstractions would help better coordinate activities across the storage hierarchy,          
rather than forcing programmers to decode the behavior of the local memory and             
storage hierarchy and the layout of global storage resources. 
  
In order to achieve this functionality, a successful programming model and its            
underlying infrastructure need to consider the execution of user functions at a            
variety of locations within the system, including within the storage system, to            
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support their execution near data. Further support also is required to provide            
complex data mappings across the various levels of the storage hierarchy. A key             
challenge will be to find a right balance of how much storage detail and complexity               
is exposed through abstractions so that the application programmer is not           
overburdened yet is able to take advantage of the storage and performance            
characteristics of different storage layers. Successful programming models will         
likely have a layered approach to interfaces and abstractions that will enable            
implementation by experienced developers and the community of domain and data           
type specific storage optimizations, integration of such optimizations in the          
programming model through lower-level interfaces and allow for application         
developers to take advantage of such optimizations through higher level          
abstractions and interfaces. Via appropriate layers of abstraction, the potentially          
complex mappings of computation and data performed by the programming model           
may be hidden from the user, simplifying development. 
  
In any discussion of future HPC systems, the issue of fault tolerance arises. The              
current model of data resilience in HPC systems is simplistic, and the level of              
protection provided by the system is not visible to the user. Richer capabilities to              
express an application’s persistence requirements for resilience are needed. 
  
In addition to opportunities in workflow-aware storage (see, e.g.,         
[Vairavanathan2012]), there remain gaps between high-level scientific workflow        
tools and the heterogeneous storage environment in HPC centers. Identifying          
middleware (e.g., [Lofstead2008]) and messaging [Subramoni2008] layers that        
appropriately abstract the storage hierarchy and perform reasonably well is the first            
step to getting scientific workflow tool users using HPC systems with burst buffers             
or other emerging storage architectures. Significant challenges exist in the area of            
wide-area data transfers in support of site-spanning and data-streaming workflows.  

5.3.3 Workflows (Engine) - Provision and Placement  
 
Workflow systems are an increasingly relevant software system to be considered in            
conjunction with scalable storage and I/O for HPC.  
  
In the context of HPC, the Swift [Zhao2007] activity has shown the potential for              
high-throughput workflow on HPC systems and, in conjunction with the Hercules           
store, has shown the potential for exploiting data locality in task placement            
[Duro2014]. Similarly, the ADIOS [Lofstead2008, Lofstead2014] activity is taking         
advantage of the DataSpaces [Docan2012] in-memory store to optimize task          
coupling in HPC systems. Research enabling the MapReduce programming model in           
HPC systems (see previous section) is also relevant to this area. However, no             
general production capability for supporting workflows in HPC systems, nor          
methodology for exposing locality from HPC storage to workflow systems, is           
available at this time. 
 

41 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



The combination of workflow engines and Linux containers is an area of interest for              
many simulation code teams and HPC facilities. Multiple HPC containerization          
efforts [Canon2016, Kurtzer2017, Priedhorsky2017] are improving the ease of         
deploying scientific software and running complex software stacks on HPC          
platforms. Scientific container orchestration, similar to the service orchestration         
provided by Kubernetes [Brewer2015], is currently in a nascent state, but may come             
to dominate how scientific code is executed on future HPC platforms. 
  
Challenges 
A production workflow capability clearly is needed for use on future HPC systems.             
Specific to SSIO, effective workflow execution on future platforms will require           
efficient communication of data between tasks. Research on reducing data exchange           
overheads between tasks in a workflow has generally focused on memory to            
memory communications of running tasks, homogeneous systems, and wide area          
networks. More research is needed to take advantage of complex storage and            
memory hierarchies in future systems for dynamically configured workflows. Also          
strongly needed is linkage to resource management systems for more dynamic           
allocation of resources within the workflow. While some research has been done on             
partitioning tasks into in situ and in-transit components [Bennett2012], substantial          
work remains before these hybrid workflows are developed. Success will require           
co-design with programming models and compilers. 
  
Additionally, workflows capture a great deal of relevant provenance information.          
This information is important for validation of results, but no mature method for             
passing this information to the SSIO system is available at this time. Successful             
solutions here will need co-design with workflow and resource management          
systems. Containerized scientific applications may simplify some provenance        
collection tasks but also generate significant difficulties in efficiently launching large           
(multi-Gigabyte) binary images across thousands of processes simultaneously as         
well as challenges in providing secure and efficient I/O within containers. 

5.3.4 I/O Middleware and Libraries (Connectivity) - both on-and offline, (not or) 
  
The trend in I/O middleware is increasingly toward software that provides flexible            
data management capabilities addressing both data-at-rest and data-in-motion.        
These libraries must support a wide array of connectivity between components           
(services) running on-node, off-node, or between physically separated hardware         
across the wide-area network, as well as handling more traditional I/O needs across             
local storage hierarchies. These libraries must also facilitate the use of a wide range              
of hardware components including different network fabrics, and heterogeneous         
storage components. Such middleware must gracefully manage failures in individual          
components by allowing connected components to survive such failures and          
offering control plane mechanisms to allow restarted component to reconnect with           
existing workflows. These control mechanisms must also allow runtime adjustment          
of resource allocation to allow workflow optimization in response to human           
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controls, changing needs of an application, or performance impacts from other           
applications running on shared platforms. For many applications, the ability of           
middleware to provide quality of service(QOS) guarantees for data movement costs           
is essential. 
  
State of the Art [needs more references, and needs more pieces] 
A variety of middleware libraries are addressing these needs to various degrees.            
ADIOS [Liu2014], and associated data staging mechanisms SST, SST-2, Dataspaces          
[Docan2012] and Flexpath [Dayal2014], represent a widely adopted and rapidly          
maturing set of middleware tools. Other libraries aimed this space include Conduit,            
Damaris [Dorier2012], DAOS, and Decaf. 
 
The libraries primarily are linked into application codes and perform data           
transformation and optimization on the nodes on which the computation is running.            
Other codes, such as analysis and visualization routines, can also be linked with             
middleware libraries to accomplish memory-to-memory data sharing, avoiding the         
expense of file system I/O. 
  
Challenges 
One significant challenge will be incorporating more runtime flexibility into          
middleware libraries. Current approaches for connecting application components        
lack resilience, with single failures often breaking other components. Furthermore,          
it is often not possible to dynamically reconfigure connections made by current            
libraries. It will be necessary to extend current approaches to support these sorts of              
runtime flexibility. 
  
Another challenge involves the need to make I/O middleware work well across a             
wide range of different platforms. Emerging platforms have different RDMA          
mechanisms and network fabrics and may host a range of accelerator technologies            
which may have separate memory and interconnect concerns. Middleware         
frameworks have to be designed to be extensible and carefully modularized so that             
support and optimizations for a constantly changing set of hardware can easily be             
integrated to keep middleware up-to-date and working efficiently. 
  
Data access patterns will also provide a challenge for these libraries. Many are tuned              
for particular classes of application and the data access patterns associated with            
those classes. Existing software has not been optimized to address some           
increasingly relevant data access patterns. Ensemble applications, for example,         
represent scenarios in which multiple relevant applications are executed to          
optimize performance and/or accuracy of application output. A high-fidelity         
simulation, for instance, can feed data into multiple instances of lower fidelity            
simulations that can run faster so that longer time periods can be simulated. Output              
from these lower fidelity simulations is then merged and returned to the higher             
fidelity simulation to correct for errors and simulate shorter time periods at much             
higher accuracy. Other application scenarios include deep learning methods in          
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which large training datasets are read multiple times in the training phase and             
task-based high-throughput applications such as applications that analyze large         
collections of sensor readings. Efficiently handlings these types of situations will           
require additional effort. 

5.3.5 Data Abstractions and Representation  
 
Within multi-developer monolithic code bases, it is not unusual to have           
policy-enforced standards for the layouts of particular data structures. However, as           
one moves towards assembling scientific workflows from both bespoke and generic           
component elements, the need for self-describing and/or semantic data         
management approaches becomes more apparent. The techniques may exploit a          
common data mark-up approach, a shared 3rd party data representation, or an I/O             
library with hierarchical attributes.  
 
State of the Art 
As mentioned in the I/O middleware section, the dominant data model supported by             
HPC I/O storage software (beyond simple POSIX) is dense, multidimensional arrays.           
Although some libraries support more complex data structures, such as geodesic           
grid data structures for climate [Palmer2011] and particle data [Adelmann2005],          
these are typically implemented atop a dense multidimensional array model. A           
second model that is supported in systems such as DataSpaces [Docan2012] and            
Hercules [Duro2014] is a tuple representation. Tuple representations provide a          
flexible method for users to define their own organizations. The Damsel           
[Damsel2014] project investigated methods for storing unstructured arrays. 
  
Compression of floating-point data has been studied as a method for concise            
representation of scientific data [Lindstrom2006], including methods that represent         
data as a function and capture error [Lakshminarasimhan2011]. 
  
Various methods of indexing scientific data have also been investigated. For           
example, the FastBit project [Wu2009] produced an indexing tool that has been            
used in a number of scientific activities, and hybrid compressing/indexing of data            
along the data path has been researched as well [Jenkins2012]. 
  
Numerous approaches for organizing data in storage have been investigated, and           
some implemented. For example, chunking approaches to data storage have been           
studied as part of work in the HDF5 project [Folk1999] and in the Panda project               
[Seamons1994]. The use of algorithmic distributions of data is common in parallel            
file systems such as PanFS [Welch2008], Lustre [Braam2004], and PVFS          
[Carns2000], with PVFS providing mechanisms for the definition of new layouts and            
application of these on a per-file basis. The Scientific Data Services framework            
[Dong2013] manages partial replicas of frequently used data in locality-friendly          
organizations. 
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Log-based approaches to storage of scientific data have been investigated in the            
PLFS [Bent2009] and ADIOS [Lofstead2008] projects, both available on systems          
today, and as a method of writing data through the MPI-IO interface [Kimpe2007]. 
  
Storage of adaptive, multi-dimensional data structures has seen some attention as           
well, for example, in the Chombo project [Colella2000] and in the FLASH            
astrophysics project [Ross2001]. However, packages specifically targeting storage of         
multiresolution data have not emerged. 
 
Challenges 
The complex data structures used by scientific codes to organize their data are not              
well supported by current SSIO products. Methods for specializing general data           
abstractions to support specific activities are needed, as well as new abstractions            
optimized to support data models present in HPC codes and analysis tools.            
Furthermore, these abstractions should efficiently map to, and enable the use of,            
emerging architectural solutions such as burst buffers. 
  
In the context of expected deep memory hierarchies, many orders of magnitude of             
variance can be present in the time to access data, based on its location.              
Expectations of cost of data access must be made available in order for workflow              
systems, programming models, and users to effectively schedule operations.         
Similarly, passing additional information on the future use of data to the storage             
system could allow for optimizations that are otherwise not possible or effective. 
Initial work has been done one exploring abstractions and runtime mechanisms for            
application-driven data management across deep memory hierarchies [Jin2015],        
and associated energy/performance tradeoffs have been explored [Gamell2013];        
but much work remains. 
  
Relationships between data are not represented well in current SSIO approaches. In            
models such as HDF, data can be grouped and organized in a hierarchy within a file,                
but relationships across files are not readily captured. Overall, a richer method for             
expressing relationships between data items is needed. 
  
As the cost (in terms of energy or time) of data movement continues to increase, the                
need for alternatives to standard compression grows. Additional research is needed           
to allow users to control the size of stored data while understanding the cost in               
fidelity. In particular, techniques must be devised that can provide a range of             
bounded error options. 
  
Additional research also is needed to better understand how indexing techniques           
and different organization approaches can further facilitate analysis and to develop           
new techniques that target specific HPC and EOD concerns. Early work in indexing             
and reorganization in transit has shown promise for this approach. Embedding of            
metadata with data may be necessary to enable certain classes of analysis as well. 
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As discussed in the data abstraction section, additional information needs to be            
communicated between applications and layers of the I/O stack. This information           
should be coupled with mechanisms that allow for adjustment of data           
representation in response to changing demands, including the possible storage of           
multiple representations (or partial representations) in anticipation of a variety of           
upcoming use cases. In situations where data is reorganized, information on how            
that data was reorganized must be captured, particularly if the fidelity of the data              
may have been affected by the reorganization. 
 

5.3.6 Data Refactoring/compression  
Introduction 
Compression of scientific data is becoming an increasingly important aspect of           
working with scientific data because of the difficulty of transmitting, storing,           
analyzing, and understanding the drastically increasing quantity of l data being           
produced. Though compression is typically separated from analysis as a distinct           
step of the scientific workflow, the two share a common goal: to extract from a mass                
of raw data the essential structure and key features of the phenomenon under study              
while ignoring or discarding the noise and simulation errors that have little or no              
impact on the quantities of interest. In order that the compression does not             
compromise the results of the analysis, it is important to understand how            
compression methods affect the specific quantities of interest used in the analysis.            
Lossless methods have unfortunately been generally unable to achieve the high           
compression ratios needed to handle the huge quantities of data being produced            
[Ainsworth2017]. Consequently, attention has turned to lossy methods, which         
brings into question the fidelity of the reduced dataset to the original dataset in              
addition to the amount of compression they achieve. Fidelity and reduction are in             
direct competition, so it is worthwhile to consider what exactly is required of a              
reduced dataset in order for it serve as a scientifically useful surrogate. 
 
State of the Art 
There are two major classes of data reduction techniques which are being            
researched and developed in the community: lossless and lossy. New research is            
needed in both of these areas in order to fully explore how scientific workflows can               
reduce the volumes of data being moved and processed through next generation            
routines. Compression is a class of reduction techniques which can reduce the total             
amount of data that needs to be transferred and stored, but the challenge has quite               
often been in the speed. Luckily, new algorithms along with faster processors have             
helped the community move in this direction. 
 
Lossless compression 
 
Lossless compression has a challenge to achieve both good compression rates, and            
good compression and decompression speeds. Blosc [Alted2010] ]is a high          
performance compressor optimized for binary data. It has been designed to           
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transmit data to the processor cache faster than the traditional, non-compressed,           
direct memory fetch approach via a memcpy() OS call. Blosc is the first compressor              
that is meant not only to reduce the size of large datasets on-disk or in-memory, but                
also to accelerate memory-bound computations. It uses the blocking technique so as            
to reduce activity in the memory bus as much as possible. In short, this technique               
works by dividing datasets in blocks that are small enough to fit in caches of modern                
processors and perform compression / decompression there. It also leverages, if           
available, SIMD instructions (SSE2, AVX2) and multi-threading capabilities of CPUs,          
in order to accelerate the compression / decompression process to a maximum.            
Furthermore, FPC, [Burtscher2009] is a fast lossless compression algorithm for          
linear streams of 64-bit floating-point data. FPC works well on hard-to-compress           
scientific data sets and meets the throughput demands of high-performance          
systems. 
 
Lossy compression 
Lossy compression, such as JPEG [12], has long been used in computer graphics and              
digital images, leveraging the fact that the visual resolution by human eyes is well              
below machine precision. However, its application in the scientific domain is less            
well established. Since scientific data are primarily composed of high-dimensional          
floating-point values, lossy floating-point data compressors have begun to emerge,          
including ISABELA [13], ZFP [14], SZ [15], and Tucker decomposition[].  
 
Challenges 
Although lossy reduction offers the most potential to mitigate the growing storage and I/O              
cost, there is a lack of understanding of how to effectively use lossy compression from a                
user perspective, e.g., which compressor should be used for a particular dataset, and what              
level of reduction ratio should be expected. We also need to address questions on: What               
data features are indicative of compressibility? How does the error bound influence the             
compression ratio? Which compressor (or technique) can benefit the most from loosening            
error bound? How does the design of compression influence compression throughput?           
What is the relationship between compression ratio and throughput? What is the impact of              
lossy compression on data fidelity and complex scientific data analytics? How to extract             
data features and accurately predict the compression ratios of various compressors?  
 
Through answering these questions, we need the ability to help HPC end users understand              
what to expect from lossy compressors. As a completely unbiased third-party evaluation            
without ad hoc performance tunings, we need to shed light on the limitations of existing               
compressors, and point out some of the new R&D opportunities for compressor developers             
and the communities to make further optimizations, thus ensuring the broad adoption of             
reduction in science production. 

5.3.7 Storage hierarchy for campaign knowledge management of scientific workflows  
Scientific data analysis has become an increasingly complex process involving large           
volumes and numbers of datasets and large numbers of data analysis workflows. In most              
cases, a scientific study goes through multiple phases: (1) pre-experiment/simulation          
phase; (2) experiment/simulation phase; (3) post-experiment/post-simulation phase.       
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These phases can be executed multiple times in an iterative process of designing new              
experiments/simulations (phase 1), monitoring and online analysis of data as it is            
generated (phase 2), and analyzing data from experiments/simulations to refine          
experiments/simulations and publish results (phase 3). A large number of derived datasets            
may be generated in these iterations. These datasets are stored in large files, which may               
reach hundreds of terabytes in size, and large numbers of files. Moreover, data access              
requirements and patterns will vary across these phases and may change dynamically and             
rapidly within a phase. In phase 1, for example, the science team may carry out               
exploratory analyses on a broad set of datasets to design simulations/experiments. Phase            
2 involves analyses that require near-real time or interactive response rates. In phase 3,              
the science team performs deeper analyses on select sets of data from phase 2 to refine an                 
experiment or a numerical model and collect results for a publication. 
  
One of the major challenges is that users not only have to take care of when to write the                   
data, but also where to place the data and how to move the data among different storage                 
levels in an efficient manner. In the current HPC storage hierarchies, parallel file systems              
are most of the time used for temporary storage. Scientists need to explicitly move their               
data from the parallel file system to a longer-term storage level before their datasets are               
deleted. This becomes a significant challenge when a study involves multiple workflows            
and large volumes of data and large numbers of data files. 
  
State of the Art 
Several research projects and tools have investigated mechanisms for aggregating state           
information across diverse resources [Czajkowski2001, Ripeanu2002] in distribured        
environments. The Integrated Rule-Oriented Data System (iRODS) [Rajasekar2010]        
provides a unified virtual collection model across heterogeneous data resources but not            
other resource types. There are also work on rule based data management frameworks             
and rule languages [Paschke2005,Horrocks2004,Browne2009]. More research is needed        
to integrate rule-based mechanisms in SSIO systems so that (1) storage and retention             
policies for each storage level can be described, (2) users can express their data usage               
intentions with respect to storage and retention policies, and (3) system components can             
efficiently stage and place datasets across the storage hierarchy to meet policy            
requirements and users’ data intentions while enabling fast access to data subsets.  
Challenges 
  
Scientists are in need for the SSIO community to research and develop support for              
managing and tracking data that are produced and consumed throughout the data lifecycle             
of a scientific study. This support should take into account different data access patterns              
and data processing intentions so that desired data subsets in a phase can be located and                
accessed efficiently. Management of datasets and resources will require that SSIO system be             
aware of the intentions of resource consumers and producers. Data can be viewed as both a                
resource and a consumer of other resources (storage, network, computation). In this            
context, analysis workflows describe how the workflow author intends that data be            
processed within an analysis workflow. 
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Interfaces and software services are needed so that scientists can express their data usage              
intentions for specific datasets and the underlying SSIO middleware could move and            
track datasets based on these intentions while complying with storage and retention            
policies of different storage levels. For example, scientists should be able to specify             
“datasets of type A will be repeatedly accessed in the next three months” or “dataset X                
can be archived after it has been analyzed and feature set F has been computed.”               
Expression and execution of such data lifecycle intentions would require research on            
rule-based systems and integration of rule-based decision making capabilities in SSIO           
systems. 

5.4 Deepening Storage Hierarchies 
 
SSIO systems are becoming increasingly complex and hierarchical. Much like          
on-node memory hierarchies containing registers, multiple levels of cache, main          
memory, and swap space, storage systems now consist of multiple levels including            
node-local storage, storage on I/O nodes, parallel file systems, campaign storage,           
and archival storage. The storage levels differ in capacity, access speed (latency and             
bandwidth), and data lifetimes (both with respect to resilience and expected           
duration of allowed data persistence) with node-local storage delivering the fastest           
access speed, smallest capacity, and shortest lifespan; and archival storage          
providing the slowest access speed, largest capacity, and nearly infinite lifetimes for            
data. To further complicate matters, there is a growing need to understand how to              
incorporate storage class memory devices into the storage hierarchy. Up until           
recently, users explicitly managed placement and movement of their data across the            
storage devices in the hierarchy. However, given the increasing complexity this is no             
longer a viable long-term solution. 
 
To address this problem, we need SSIO infrastructure that facilitates appropriate           
movement of users’ data in the storage hierarchy. This infrastructure needs to            
include not only data movement within a single compute cluster, but also across             
storage systems in a center. There is a need for application and tool interfaces to               
allow SSIO systems to work with resource managers and schedulers, monitoring           
systems, workflow systems. The interfaces need to provide a mechanism for the tool             
or the user to inform the system of the needs of its data, e.g., lifetime requirements                
and use by other application components, as well as to query the devices in the               
storage hierarchy for their characteristics, e.g., capacity and bandwidth. 
 

5.4.1 Storage Hierarchy Levels 
As discussed in the introduction to this section, SSIO hierarchies are becoming            
increasingly complex. The storage levels in the hierarchy differ in capacity, access            
speed, and data lifetime (See Figure XX).  
 
At the very top of the hierarchy are the storage devices that exist on compute nodes                
themselves, typically NVRAM such as SSD, but in the near future are expected to              
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include storage class memory (SCM) devices such as 3D XPoint® memory or            
Z-NAND flash memory. Node-local storage devices have the fastest access times,           
with SCM devices being several times faster than SSD, but with smallest capacities             
and shortest data lifetimes, typically job lifetime. At the next level of the hierarchy is               
I/O node storage, e.g., Cray DataWarp. Here, the storage devices are located on             
specialized nodes in the compute cluster for faster access than from the parallel file              
system, typically with capacities large enough for most HPC jobs’ input and output             
and data lifetimes equal to that of the job, although persistent stores may be              
allocated. The next level of the hierarchy is the familiar parallel file system, with PBs               
capacity and data lifetimes on the order of months. A relatively new addition to the               
storage hierarchy is campaign storage, to support long-running application         
campaigns that can last months or longer. While slower than the parallel file system,              
campaign storage data lifetimes last the length of the application campaign. At the             
bottom of the storage hierarchy is archival storage, with relatively infinite capacity            
and data lifetimes, but extremely slow access times.  
 

 
State of the Art 
Until recently when storage hierarchies mainly consisted of the parallel file system            
and archival storage and possibly node-local NVRAM as SSD, users of HPC systems             
managed data movement explicitly either in their code or job scripts. However,            
client-side caching and extensions to remote compute and ION caching have been            
widely explored [Thakur1999, Liao2007, Isaila2011, Lofstead2008, Abbasi2010,       
Qin2009]. With the advent of burst buffer devices on systems, vendors are providing             
APIs for transferring data to/from burst buffers and parallel file systems, e.g., Cray             
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DataWarp API [Cray DataWarp n.d.] and IBM BBAPI [IBM CAST n.d.]. With these             
APIs, users can manage data movement asynchronously with asynchronous transfer          
or stage in/out commands. A number of research efforts [Ni2012,          
Rajachandrasekar2013, Barton2014] have begun exploring the use node-local burst         
buffers within HPC systems.  
 
The current state of the art for hierarchical storage management (HSM) in HPC are a               
set of tools, APIs, and I/O libraries that help users manage the storage hierarchy. A               
few researchers [Barton2014, Goodell2012, Brinkmann2014, Jones2017] have       
investigated how best to manage and expose this deepening storage hierarchy in the             
general case. Other researchers have focused on specific use cases. SCR           
[Moody2010], FTI [Bautista-Gomez2011], and VeloC [VeloC n.d.] are        
checkpoint/restart libraries that capitalize on the short lifetimes of checkpoint files           
which are only needed until a more recent replacement checkpoint is written and             
optimize checkpointing time by transparently utilizing node-local storage to cache          
checkpoint data and move a select few checkpoints down to the parallel file system.              
Recently SCR added an API to handle automated movement of general output files in              
addition to checkpoints. I/O libraries that support automated movement of files in            
the storage hierarchy include HIO [HIO n.d.] and HDF5 with Data Elevator            
[Dong2016]. 

 
Challenges 
 
Significant challenges in this area exist, with the deepening of the storage hierarchy             
and performance characteristics of next-generation storage technologies. Additional        
research is needed to understand how data and programming models expose and            
interact with this deep hierarchy, how resource management can be coordinated           
across this diverse set of devices, and what capabilities are needed from interfaces             
in order to support science needs. Additionally, facility teams need tools to inform             
procurement decisions to match the overall hierarchy to their projected workloads           
when they develop specifications for a new system or an upgrade. 
 
An additional difficulty in designing application support for future hierarchical          
storage is understanding of the workload requirements of exascale applications. For           
example, will bulk synchrony at the application level survive? If so, the entire             
storage stack may not need radical changes. However, if applications become           
increasingly asynchronous, they may require new mechanisms in order to manage           
consistent views of distributed data in the hierarchy. 

5.4.2 The Role of Nonvolatile Memory in SSIO 
 
Nonvolatile RAM or NVRAM currently exists in HPC systems as simple node-local            
SSD storage or as burst buffer with system software support. In the near future, we               
expect HPC systems to additionally include storage class memory (SCM) devices           
[Freitas2008] such as 3D XPoint® memory or Z-NAND flash memory, and in            
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next-generation systems devices such as phase change memory or memristor (See           
Section 5.1.1 for more discussion of emerging storage hardware). While the addition            
of NVRAM devices in systems has and is expected to continue to improve I/O              
performance, their presence increases complexity in the storage hierarchy.  
 

 
 
 
 
State of the Art 
 
Next-generation NVRAM technologies such as 3D XPoint® [Optane2018,        
QuantX2018], Z-NAND, and phase change memory will present yet another layer           
within the hierarchy with semantics akin to traditional DRAM; research has begun            
in this area to assess their impact on file system design [Miller2001, Wang2002,             
Condit2009, Jung2010, Wu2011, Xu2016] and their use as caches [Liu2012b,          
Kannan2011a, VanEssen2012, TXu2016] or for staging and checkpointing        
[Kannan2011b, Kannan2013], and current systems employ SSD-based NVRAM into         
their design e.g., Cori and Trinity with DataWarp; and Summit and Sierra with node              
local burst buffers.  
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Challenges 
 
 
The addition of NVRAM in HPC storage systems increases complexity, arising not            
only from determining best placement of NVRAM in the system, ranging from            
compute node to I/O node to the parallel file system (See Figure XX), but also from                
understanding its role in the storage hierarchy from an application viewpoint.           
NVRAM devices add to storage system costs and so we need to evaluate the              
cost/performance tradeoffs for placement of NVRAM in different locations in the           
storage hierarchy. In addition, for NVRAM placed on compute nodes, we need to             
understand if the devices are best employed as extensions of memory or fast storage              
devices in the hierarchy. Considerations for this choice include application I/O           
workload as well as read and write asymmetries and wear characteristics of the             
device. A full understanding of the trade-offs will require research into these areas. 
 

5.4.3 Scheduling and Resource Management 
 
Integration of I/O needs with scheduling and resource managers is becoming           
increasingly important to effectively use and manage hierarchical storage systems          
that can include NVRAM, burst buffer, parallel file system, campaign storage, and            
archival storage. Better coordination between the storage system and the scheduler           
can ensure less contention at the storage system and result in improved job             
runtimes.  
 
State of the Art 
 
Batch scheduling has been used for supercomputers for some time, and current            
systems have integrated burst buffer devices into scheduling and resource          
management decisions. For example, with Cray DataWarp users can request          
DataWarp allocations in their job request; with IBM burst buffers on Sierra and             
Summit users can stage data in and out of the node local burst buffers via their job                 
script. Work involving multi-resource scheduling, including moving data and         
scheduling jobs, has been done for grid computing [Schopf2002]. Several works           
have shown ways to map jobs onto compute nodes [Mubarak2017] and to integrate             
storage with an HPC batch scheduler [Bent2004, Gainaru2015, Herbein2016] to          
reduce I/O contention and improve application throughput. Other works have          
investigated predicting storage system performance for applications [Xie2017],        
identifying the root causes of I/O interference [Yildiz2016], and scheduling          
application I/O phases to avoid contention and for power management          
[Thapaliya2016, Savoie2016]. 
 
Challenges 
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There are major challenges associated with scheduling storage resources and I/O           
activities on HPC systems. For example, pre-staging data onto compute node local            
burst buffer devices can prevent efficient backfilling of jobs when unexpected           
resources are available, e.g., when a job crashes and the allocation is terminated             
early. Here, the choice must be made to either continue or abandon pre-staging             
progress that has been made on the original allocation, potentially increasing the            
waiting time of the user in the job queue. In addition, dynamic and multi-resource              
scheduling (as opposed to static scheduling simply for compute nodes) adds           
significant complexity to scheduling algorithms, potentially leading to less than          
optimally scheduled queues. 
 
Another challenge is scheduling I/O activities of running jobs to reduce contention.            
While many HPC applications tend to have regular behavior and thus relatively            
regular I/O patterns, it is a complex problem to accurately predict I/O phases of              
regular applications in the presence of other active jobs that may interfere with or              
change the performance of the predicted application pattern. Additionally, the          
emergence of non-traditional HPC I/O workloads (data-intensive or in-situ)         
complicates I/O pattern prediction. For reducing inter-job I/O contention, we will           
need a wealth of information on historical and running application I/O           
characteristics, storage system load, and the ability to feed this data back to tools              
and job schedulers. 
 
Workflow management systems present a multidimensional resource provisioning        
challenge for the SSIO system. Workflow systems could, however, become part of            
the solution, in that they can provide a priori and runtime information of the              
workflow components to schedulers and resource managers or can adapt their           
execution to work within the available resources. The scheduler will need to            
coordinate workflow or job capacity and bandwidth needs with the burst buffer and             
factor in stages and drains to the disk and/or archival subsystem. This effort will              
require elastic provisioning of storage and bandwidth across storage tiers in order            
to satisfy dynamic workflow needs. 
 

5.4.4 Campaign and Archival Storage 
 
Campaign and archival storage represent the slowest tiers in the storage hierarchy,            
but provide storage space for long-lived data. Campaign storage supports          
long-running application campaigns that consist of many simulation experiments,         
e.g., to explore the application parameter space, that can last months or longer.             
Archival storage has long been tape storage, with relatively infinite capacity and            
data lifetimes, but extremely slow access times. Archival storage is intended for            
storing data that may need to be retrieved years or decades later.  
 
State of the Art 
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Campaign storage has recently emerged as a new tier in the storage hierarchy, e.g.,              
on Trinity at LANL. It is intended to provide relatively fast access compared to              
archival storage to colder application data via a near-POSIX file system interface            
[Braam2017]. Previous implementations of campaign storage used disk-based        
object stores that sit between the parallel file system and archival storage            
[Bent2016]. More recent versions are built on tiered-parity systems (e.g. 10+2           
distributed erasure across 17+3 RAID groups) using chunk servers that provide           
data protection in even severe device failure scenarios [Inman2017]. 
 
Facilities have been using tape for archives for some time. Hierarchical storage            
management systems such as HPSS [Watson1995] use a disk front-end to speed the             
time to first byte (TTFB) for small and recently accessed files. Work has been done               
to connect namespaces across file systems and archives [Lustre2010,         
Degremont2013] and to understand how archives are currently used in HPC           
[Adams2012]. Archives today are predominantly centralized stand-alone services        
that are used as a long-term storage where read access is often slow. Recent              
research has investigated the viability of replacing tape with disk drives in archival             
storage [Inman2014]. 
 
 
Challenges 
 
For campaign storage, there is a need for researching scalable mechanisms for            
handling extremely large data sets with good performance. Aspects of this need            
include: investigation into the POSIX/near-POSIX requirements for this tier of          
storage, efficient metadata handling, data set semantics for efficient grouping,          
management, and movement of large sets of application output.  
 
We anticipate a real need for both the campaign and archive tiers to integrate with               
the higher levels in the storage hierarchy. Given we expect a larger fraction of jobs               
to employ data analysis in situ on the burst buffer, we need to devise scalable               
explicit and automated HSM approaches for moving data between the tiers. We            
expect the architecture and design of archival storage will need to be able to adapt               
to changes in the storage hierarchy and provide access mechanisms to support            
active-archive processing, cross-site data movement, and rich metadata services.         
This may necessitate the use of alternative archive technologies beyond tape, such            
as power-managed disk or optical storage. 
 
Challenges of particular concern for archival storage are (1) effectively verifying the            
integrity of archive files over time and continuous technology migration, (2) the cost             
and practicality of retrieving and searching data that are resident on slow TTFB             
devices, and (3) investigation of new storage media for archive as the cost of tape               
implementations increases. 
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5.5 Understanding Storage Systems and I/O 
 
Measurement, modeling, and understanding of SSIO systems play critical roles in a            
wide variety of data-intensive scientific computing activities. Unfortunately, while         
there are numerous user-facing performance tools available for CPU and accelerator           
resources, I/O performance analysis remains under-developed. In addition, storage         
systems themselves are complex and prone to performance degradation as a result            
of subtle interactions between system components and application workloads. Both          
challenges are exacerbated by the proliferation of extraordinary concurrency,         
heterogeneity, and complexity as SSIO systems strive to meet the needs of DOE             
science. These challenges call for additional research into instrumentation and          
monitoring tools, workload modeling techniques, system modeling       
techniques, and methods for interpreting and applying the knowledge gleaned          
from those tools and techniques. By increasing our understanding of SSIO           
systems, we will not only be able to improve the productivity of today’s applications,              
but also provide crucial intelligence for effective design, development, and          
procurement of tomorrow’s applications, systems, and system software. 
 

5.5.1 Instrumentation and Monitoring 
 
As increasingly sophisticated SSIO systems are deployed, it will become more and            
more important to extract information about application behavior, the state of           
constituent devices, and the aggregate condition of the system. These three aspects            
of system state can be collected via instrumentation or monitoring and combined to             
produce an end-to-end view of data movement and storage. End-to-end          
instrumentation and monitoring data forms the foundation of any effort to           
understand a storage system, whether the purpose is to optimize an application,            
validate a predictive model, maximize utilization, or find the root cause of a             
problem. 
 
Scalable and low overhead collection of performance, fault, power, and usage data            
will allow timely or even online analytics for system managers, users, and            
researchers. The ability to align the captured parameters in time and space, as well              
as correlate these with system component characteristics, will be critical, not only to             
gain a correct assessment of the system state, but also to provide predictive             
capabilities. Performance metrics will need to be collected at every level, ranging            
from the application to the burst buffers to the storage system and then to the               
archives, and must be propagated throughout the system. Research will also be            
needed to standardize the format of the information being collected and to enable             
rich analytics of the collected performance data to serve as the basis for research              
efforts in performance tuning, scheduling, and reliability. 
 
State of the Art 
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On the application side, tools such as Darshan [Carns2011] are capable of producing             
lightweight instrumentation. Darshan has a notable breadth of impact due to its            
ability to instrument production applications without perturbing performance.        
Higher fidelity tools such as TAU [Shende2006], IPM [Uselton2010], and Score-P           
[Knüpfer2011] are employed as needed for more in-depth analysis. Score-P serves           
as the common underlying instrumentation method for multiple performance         
analysis tools. Broader system-wide monitoring efforts have long benefitted from          
techniques developed in the data center, grid, and cloud computing community           
[Sigelman2010], but more recent efforts such as the Lightweight Distributed Metric           
Service (LDMS) [Agelastos2014] have created frameworks that are more directly          
tailored to HPC environments. LDMS covers a wide range of system metrics in             
addition to I/O metrics. Hardware device (such as disk arrays) monitoring           
[DDN2018] and commercial software (such as parallel file system) monitoring          
[Cray2018] are most often instrumented by proprietary vendor tools or proprietary           
vendor tools in conjunction with facility frameworks. For example, [Kim2015]          
demonstrated how telemetry from storage arrays can be mined to understand           
facility-wide storage workloads. 
 

 
 

 
Challenges 
 
The first challenge in instrumentation and monitoring research is dealing with the            
onslaught of rapidly evolving HPC technology. This includes new application models           
such as machine learning frameworks [Abadi2016], new hardware devices such as           
byte-addressable non-volatile memory [Spelman2018], and new data services such         
as Intel’s DAOS storage system [Lofstead2016], none of which are adequately           
represented by today’s HPC instrumentation and monitoring tools. Tools such as           
Darshan, Score-P, and SIOX have made initial steps towards this problem by            
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modularizing their software architecture [Snyder2016] to permit future expansion,         
but more work is needed. 
 
Secondly, data integration and alignment is an ongoing challenge, particularly as           
systems become more heterogeneous and diverse. This is reflected in a lack of             
standardized formats for storage telemetry that make data sharing and common           
analysis difficult. It is also reflected in limited ability to tag and trace storage events               
from end to end in modern systems. Ideally it would be possible to correlate a               
specific line of source code in an application all the way to the level of an individual                 
storage device access. Early work such as [Muelder2011] have demonstrated          
preliminary capability, but such techniques have not been widely adopted in the            
field. 
 
Finally, the tension between instrumentation fidelity and runtime overhead have          
always been a factor in computer science, but a coherent solution to this problem in               
SSIO systems remains elusive. Inroads have been made in this direction with ability             
to adapt polling frequencies and instrumentation methods at run time, but it is             
largely the responsibility of administrators and individual users to make ad hoc            
decisions to address this tradeoff. 

5.5.2 Interpretation and Application 
 
Instrumentation and monitoring data is only as useful as its application in the             
service of computer science research or scientific productivity. This can be           
accomplished in a number of ways, such as combining data products and models to              
produce outcomes greater than the sum of their parts, integrating models into            
runtime systems for autonomous feedback, developing analysis tools or expert          
systems that turn data into actionable feedback, or incorporating data into the            
broader context of understanding HPC systems or collections of HPC systems. 
 
State of the Art 
 
The first task in interpreting and applying instrumentation and instrumentation          
data is to simply manage the large volume of data. Previous work such as              
[Vijayakumar2009] have explored trace compression mechanisms, and there are a          
number of activities under way to archive and index performance metrics in            
specialized databases for data mining purposes [Vazhkudai2017,Prometheus2018]. 
 
Most systems are monitored by gathering a large set of data about the system and               
then having a storage expert sift through the data [Gainaru2011]. Many open-source            
tools and vendor tools for gathering and monitoring this operational data already            
exist, and many of these tools are combined by using custom scripts [Miller2010].             
Recent projects have made progress in creating frameworks to combine SSIO           
instrumentation and monitoring data sources for holistic analysis purposes         
[Betke2017,Lockwood2018,Frings2007]. Example studies from the TOKIO project       
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illustrate how this type of data integration and synthesis can reveal system            
properties and correlations that are not otherwise visible from individual          
component instrumentation [Lockwood2018].  
 
Studies have also shown how real time data capture can be integrated into runtime              
systems to improve performance. Examples include runtime probing to select          
optimal storage resources [Son2017]. 
 
Both vendors [Vincent2018] and facilities [NERSC2015] have pursued methods for          
providing actionable feedback to users, either in the form of I/O parameter            
optimization or visual dashboards that provide rapid performance feedback.         
Specialized vendors [Ellexus2018,IODoctors2018] have also brought to market I/O         
analysis tools with an increased focus on the end-user perspective. 
 
Challenges 
 
I/O Performance data integration will remain persistent, ongoing challenge without          
buy-in from vendors to aid in data alignment and normalization across components.            
The scope (and potential benefit) of data integration continues to grow as well, as              
understanding I/O increasingly requires not only awareness of HPC system          
components, but also awareness of experimental and observational data sources,          
wide area transfers, big data and cloud computing, and other resources that will             
constitute future scientific campaigns. 
 
Despite the many advancements in I/O instrumentation and monitoring,         
interpretation of the data remains, by and large, an expert facility administrator            
activity. Only advanced application developers are likely to be able to quickly            
interpret I/O performance in a system, application, and historical context and assess            
how to improve performance, if they even have access to sufficient data to begin              
with. 
 
Finally, once an I/O analysis has been performed, there are still many open             
questions with respect to how to best enact solutions. Possibilities include guided            
suggestions, automatic tuning, and automatic reconfiguration of available resources. 

5.5.3 Modeling Workloads 
 
In order to rigorously study an SSIO system, we must first establish the ability to               
accurately model the workloads that it will service. SSIO workloads include not just             
traffic from individual application runs, but also large-scale multi-step scientific          
workflows and even aggregate traffic from a facility’s entire user base. It is not              
practical to reproduce such workloads by re-executing production applications.         
Re-executing full applications may consume too much CPU time, be logistically           
difficult to execute, contain sensitive information, or simply be impractical for a            
simulator or mathematical model. 
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The SSIO community therefore has a crosscutting need for modeling of           
representative workloads for storage system evaluation and performance tuning         
purposes. This modeling can take many forms, including proxy applications,          
microkernels, synthetic benchmarks, mathematical request distributions, and more.        
Regardless of the methodology used, our ability to accurately model SSIO workloads            
has a direct impact on how effective our other SSIO research activities will be in the                
real world. 
 
State of the Art 
 
Several research efforts have made important contributions in automatic creation of           
representative skeleton applications based on instrumentation or static analysis.         
Examples include [Logan2012,Dickson2017,Behzad2014b]. There is also promising       
early work in generalizing this capability so that workloads can be modeled from             
multiple data sources depending on available resources and desired fidelity          
[Snyder2015]. Many of these tools rely on instrumentation methods described          
earlier in Section 5.5.1, but it is also important to point out that some researchers               
have developed techniques that specifically target the need for accurate workload           
modeling [Behzad2014a,Byna2008,Dorier2014]. Preliminary work has also shown       
the potential to extrapolate small-scale workloads into large-scale workloads         
[Luo2017]. 
 
Benchmarking is also an important part of SSIO research. Many HPC SSIO-related            
benchmarks exist, such as IOR [Shan2008], which focuses on bulk data performance,            
and MDTest [MDTest], which focuses on metadata operations such as file creation            
and deletion. Those two benchmarks are being merged into a single code base and              
are actively promoted as part of the IO500 initiative to standardize reporting and             
sharing of I/O benchmark results [Kunkel2017]. Additionally, the recent DOE          
CORAL 2 procurement included four I/O benchmarks: the aforementioned IOR and           
MDTest as well as Simul and FTree [Coral2018]. The MACSio benchmark has made             
strides in representing multiple application patterns and I/O paradigms within a           
single benchmark tool [Miller2015]. Recent efforts have also have explored          
self-adaptive benchmarking, in which the benchmark adjusts itself to the          
capabilities of the system and also takes preliminary steps to isolate the sources of              
bottlenecks [Kunkel2018]. 
 
Efforts are also underway to to extend the benchmarks beyond single case            
executions into regular regression tests that are track performance over time for a             
system [Lockwood2017,Palmer2015]. 
 
Challenges 
 
Very little work exists in modeling future SSIO workloads. This includes           
incorporation of emerging computational methods and their associated I/O patterns          
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(notably, machine learning algorithms), techniques for extrapolating today’s        
workloads to future systems, incorporating benchmarking in co-design efforts, and          
modeling of larger-scale workflows that span multiple jobs and applications. As has            
been the case for many years, the field is in need of more microkernels that               
represent prevalent applications moving forward. 
 
Current benchmarks also suffer from piecemeal methodology and lack of          
standardization. Most benchmarks measure low-level SSIO activities; only a few are           
intended for full stack understanding. Benchmarking results are also often reported           
inconsistently, with different levels of rigor with respect to timing methods,           
workload execution time, and sampling methods to account for variance. At a            
broader level, workload models, evaluation results, and the parameters needed to           
recreate them are not consistently disseminated in a standard way through the            
community. Facilities and researchers are not incentivized to run workload models           
and disseminate the results. 

5.5.4 Modeling Systems 
 
There is a long-standing need for accurate and easy-to-use modeling and simulation            
tools for SSIO systems. Modeling and simulation could be applied to           
experimentation with new hardware, new system architectures, new algorithms,         
and new software technologies without consuming costly production resources. It          
can also be used in real-time or near-real-time to aid in autonomous decision             
making for deployed systems. As with the tools described in previous subsections,            
however, SSIO system models require continuous maintenance and follow-up to          
ensure that they track rapidly evolving technology. 
 
State of the Art 
 
System modeling techniques can be broadling characterized into simulation-based         
methods (e.g., discrete event simulators) and analytical methods (e.g., machine          
learning or statistical models). Both can play a key role depending on the objective,              
use case, or availability of input data. For example, fine-grained models may provide             
the best approximation of behavior, while coarse-grained models may provide more           
rapid turnaround or results that are easier to understand. Some modeling           
techniques rely on intimate architectural knowledge, while others rely on large data            
sets for training. 
 
The state of the art for SSIO system simulation is the CODES project, which has been                
used for a number of studies including evaluation of burst buffer architectures and             
communication interference due to I/O traffic generated by burst buffers          
[Mubarak2017]. CODES has the ability to execute simulations at large scale using            
existing DOE computing resources and a modular software infrastructure that          
enables subsets of the model to be interchanged according to fidelity or modeling             
needs [Mubarak2017TPDS]. Other SSIO simulation frameworks have recently        
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explored topics such as big data storage systems [Liu2015], wide area transfers            
[Kettimuthu2012,Settlemyer2012], and hierarchical storage [Luettgau2017].     
Simulators such as SIMCAN [Núñez2010] and PIOSimHD [Kunkel2013] also have          
the ability to ingest HPC I/O traces and evaluate system performance at multiple             
levels. 
 
Interconnect technology plays a key role in storage system simulation, and this field             
is well-explored by not only CODES but also the SST project [Groves2016]. Both             
CODES and SST offer a range of modern interconnect topologies deployed in HPC             
systems and data centers. DiskSim remains the most widely used storage device            
simulator [DiskSim n.d.] in a variety of research endeavors, but others have recently             
been explored as well [Poremba2015].  
 
The state of the art for SSIO system mathematical modeling applies machine            
learning techniques to derive predictive models based on observation and analysis           
of previous behavior [Madireddy2018,Xie2017]. Current work in this area focuses          
on how to account for variability and uncertainty in predictive models, how to adapt              
models in response to changes over time, and how to apply these results to future               
systems. 
 
Challenges 
 
A number of challenges remain in modeling of SSIO systems. The first two pertain to               
the previous subsections in this report: how do we incorporate instrumentation and            
monitoring (Section 5.5.1) into models for ongoing validation and evolution, and           
how do we combine workload and system modeling (Sections 5.5.2 and 5.5.3) into a              
coherent framework? The CODES project has made progress on the latter issue, but             
the former remains an open challenge. Secondly, the emergence of new technologies            
and new applications are stretching the scope of what needs to be modeled to gain a                
thorough understanding of SSIO systems moving forward. At the component level,           
new storage technologies such as non-volatile memory (NVM), shingled disks, and           
heat-assisted magnetic recording (HAMR) are not well-represented in today’s         
models. At the system level, scientific campaigns will increasingly span multiple           
jobs, multiple system resources, and multiple data sets in order to produce a             
meaningful scientific result. This calls for storage system models to broaden their            
scope to include multi-job workloads, wide area transfers, and other elements of the             
HPC ecosystem in a coherent modeling environment. At the modeling algorithm           
level, additional work is needed to accurately account for contention and other            
sources of variability in order to maximize the usefulness of SSIO models. 
 
Other important issues with simulation tools include intellectual property         
limitations for industry-developed simulation tools, incomplete validations of the         
tools, and incomplete validation of data from simulation of SSIO systems. Validation            
of tools takes years of use and improvement. The community lacks the resources to              
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promote standardization or broad use of modeling tools, and vendors are not            
incentivized in procurement to deliver behavioral models for their products. 
 
 

5.6 Streaming Data 
 
The storage systems designed for advanced scientific computing have historically          
been designed to absorb I/O generated from bulk-synchronous checkpoint and          
restart operations. However, the rate at which experimental and observational data           
(EOD) facilities are improving in throughput and resolution are forcing their           
resulting data volumes and scales of analysis into the realm of high-performance            
computing as well. The result is a growing tension between the storage and I/O              
requirements of EOD sources and the infrastructure provided by ASCR facilities. 
 
Broadly speaking, there are two major EOD analysis modes from which the majority             
of streaming data requirements emerge. The first is tightly coupled to data            
acquisition with the intent of reducing the latency between an experimental           
observation and insight to allow rapid refinement of experimental conditions. This           
mode acknowledges the scarcity of time that the experimental or observational           
instrument can be utilized and aims to maximize the productive output of an             
instrument in a fixed period of time. Facilities such as telescopes (which may be              
observing rare events[Nugent 2015]) and beamlines (where beam time is strictly           
allocated[Parkinson 2016]) are often the source of streaming data workloads          
operating in this mode. 
 
The second mode of streaming data analysis occurs asynchronously to data           
acquisition. Whereas the source of the streaming data in the primary mode is an              
experimental instrument itself, the input data in this secondary mode is streamed            
from remote, nonvolatile storage. The goal of this secondary analysis is often to             
derive insight from large collections of experimental data where the precise quanta            
of data that are relevant to the scientific objective are not known a priori. As a                
result, this secondary mode may only access parts of certain data objects, large             
collections of data objects, and data objects that may be distributed across disparate             
physical storage systems. This mode is most often used in large collaborative            
experiments such as the Compact Muon Solenoid [Bloom 2015] at the Large Hadron             
Collider where throughput, not latency, of the analysis is the chief optimization            
point. 
 
These two modes are by no means mutually exclusive, and a single experimental or              
observational facility may require that both tightly coupled acquisition and analysis           
and asynchronous streaming analysis be carried out at a large-scale computing           
facility. Furthermore, the precise definition of streaming data in both cases           
continues to be the subject of some debate; for example, data acquisition systems             
commonly generate the output to POSIX files, and analysis applications consume           
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input from POSIX files. In such cases, it is unclear if such a workflow is truly unique                 
from a workflow which involves simple remote file transfers. 
 

5.6.1 Tightly coupled acquisition and analysis 
 
State of the Art 
The relatively high cost of generating data through an experimental or observational            
instrument results in their data output having very high value. It follows that             
committing these raw outputs to nonvolatile storage as quickly as possible is a chief              
design point for data acquisition systems (DAQs), and many DAQs follow the            
archetypal design shown below. 
 

 
 
Because POSIX file systems have very well defined consistency and durability           
semantics, DAQs attached to EOD systems often convert raw detector signals           
directly into POSIX files on locally attached, low-latency persistent storage. Once           
these file-encoded data are persisted locally, they can be transferred or streamed to             
a remote computing resource for analysis. 
 
The end-to-end movement of experimental or observational data between the DAQ           
and computing facility can occur in several different ways, as depicted below. 
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Mode (a) above, where a file is streamed from a local file system attached to the                
DAQ to a storage system to which the HPC has direct access, is most common               
despite the data "streaming" actually happening entirely in the form of standard            
POSIX file transfers via Globus, bbcp, scp, or other tools. Despite a number of              
significant drawbacks to scientific productivity, this is currently the prevailing mode           
of operation because it is fundamentally simple; file transfer tools already exist to             
moderate the inter-facility data motion, and POSIX file systems have an extremely            
well defined API and access semantics. As such though, this mode is not truly              
streaming so much as it is near-real-time file transfer. While such near-real-time file             
transfers come with a set of challenges worth further discussion, these challenges            
are distinct from the other two modes since file-to-file transfers use           
well-established tools and semantics. 
 
A major issue with respect to file-to-file transfers are their inherently high latencies             
associated with persisting the transferred data in its entirety in two places before it              
can be processed. Even if only the first few kilobytes of a specific data unit from a                 
DAQ need to be read to determine if the data is valid or not, the entire contents of                  
that data unit must be transferred to the computing facility before a basic validation              
process can occur. Furthermore, the process by which the analysis application is            
informed that a datum has been successfully transferred is also often file-based;            
polling for a sentinel file or a complete set of data units is commonly used. These                
latencies of POSIX synchronization and file-based polling are antithetical to the           
notion of tightly coupled DAQ and analysis, leaving significant room for           
improvement in the responsiveness of streaming data analysis where it may be            
required for applications such as experimental steering. 
 
Mode (b) partially addresses this issue by transferring data directly from the DAQ's             
local storage system to the memory space from which the analysis will be computed.              
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Because the analysis application does not have to traverse the POSIX I/O stack to              
access new data units as they arrive, there is potential for a significant reduction in               
the latency between data generation on the DAQ and analysis results from the             
compute. The tradeoff in this case is that the data transfer between the experimental              
or observational facility and the computing facility is much less well defined; the             
analysis application is no longer receiving its input from POSIX files and instead may              
rely on network-based protocols (such as S3 or Swift). However, such protocols            
often support partial reads where required and allow analysis applications to           
retrieve only the data of interest over the wide-area network instead of copying             
entire data files. 
 
Mode (c) minimizes the latency between data acquisition and analysis, offering the            
tightest coupling between the two. While this is the notionally optimal configuration            
of the three modes, it is also the most susceptible to data loss as a result of the data                   
being entirely volatile from data acquisition to analysis. As previously discussed,           
this is not a viable solution for many EOD facility users due to their inability to                
tolerate data loss in the event of a failure of the WAN or compute facility. Given that                 
today's computing facilities have long served batch-oriented workloads with         
indeterminate latencies between job submission and execution, downtime for         
maintenance or long queue wait times are also commonplace. This reality further            
mades mode (c) untenable in the presence of networks that fail and compute             
facilities that do not align their maintenance windows with those of experimental            
facilities. 
 
Challenges 
As described above, the state of the art for tightly coupled data acquisition and              
analysis is predominantly file-based data generation, file-based data transfer, and          
file-based ingestion by analysis applications. This results from a tension between           
the desire for low-latency, highly responsive access to data from the computational            
resource and the need for highly reliable data acquisition using easily implemented            
APIs and semantics.  
 
A principal challenge which impedes moving from mode (a) and towards the more             
latency-optimized modes (b) and (c) is the lack of well defined interfaces between             
DAQ systems and the compute memory from which analysis applications ingest           
their data. Unfortunately, many DAQs are proprietary black-box appliances, and          
redefining their external interfaces compounds this challenge. Wrapping the DAQ in           
a data transfer agent with well-defined external interfaces is a promising direction            
that preserves the requirement for low time-to-nonvolatility while enabling external          
data access through APIs that are not tied to POSIX files. Other abstractions atop              
POSIX files, including HDF5's Single Writer, Multiple Reader (SWMR) capability, also           
provide a more semantically relevant API to analysis applications than what the            
DAQ may provide. 
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The tension between EOD workloads requiring highly available computing and          
storage resources and the shared nature of computing facilities' storage and           
networking resources exposes another significant challenge. Aside from operational         
considerations such as maintenance windows, quality of service guarantees along          
the data path between DAQs and the analysis application would be of great benefit              
to streaming workloads. While most networks, transport protocols, and file systems           
support quality of service guarantees to some degree, they are not well integrated             
with each other and into the job control systems at computing facilities. 

5.6.2 Asynchronous streaming analysis 
 
State of the Art 
High-value experimental data sets as described in the previous section retain           
significant scientific value for years after their generation. Both large-scale          
experiments (such as the Compact Muon Solenoid detector[Bloom 2015] at the           
Large Hadron Collider) and observational data sources (such as the Sloan Digital Sky             
Survey[Abolfathi2018]) produce data that are consumed by thousands of         
researchers around the world. The mechanisms by which such data sets are            
distributed to their scientific communities are widely variable though. 
 
Owing in part to the size of these data sets, they are not often processed in their                 
entirety; rather, researchers conduct focused analysis on subsets of the data that            
may be either a representative sample or a cross-section of the data types observed.              
If the data set is indexed in a way that is amenable to simple subset selection, the                 
process of transferring data is a straightforward matter of identifying the remote            
data resources of interest and only transferring those data to the computing facility             
for processing. In the cases where a suitable index is not available a priori, the               
process of identifying data to be analyzed can involve a significant amount of wasted              
data transfer to build such an index by inspecting the entire remote data set. 
 
The APIs and semantics of accessing these remote data sets vary. The high-energy             
physics community has largely standardized around the XROOTD        
framework[Dorigo2005] which provides the infrastructure for distributed,       
federated, and scalable data repositories that enable client applications to retrieve           
data objects from a single, remote, global namespace directly into application           
memory without having to stage it to a local POSIX file system. That said, XROOTD is                
not as semantically rich as POSIX file systems; for example, it is possible to retrieve               
entire data objects into application memory, but there is no straightforward           
mechanism to stream only a partial object (such as a data object header). 
 
Other scientific data sets are provided in a much more manual fashion with the most               
rudimentary cases providing only basic HTTP access as a means to transfer remote             
data objects into application memory. Staging data objects to near-compute storage           
using Globus, bbcp, or similar file transfer tools is also prevalent for the same reason               
that file-to-file transfers prevail in the tightly coupled acquisition and analysis case:            

67 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



POSIX files provide a very well defined API and set of access semantics which              
analysis applications can easily adopt. 
 
In all cases, asynchronous streaming analysis is distinct from tightly coupled           
streaming analysis in that it does not have the extreme requirement of high             
responsiveness and low latency between signal generation and analyzed data.          
Rather, asynchronous streaming workloads are driven by the desire to process as            
much data in as short a period of time as possible. Furthermore, such workflows are               
not necessarily open loops as is common with tightly coupled streaming analysis;            
there are cases where it would be advantageous to make multiple passes over data              
during analysis[STREAM2016]. 
 
Challenges 
Because asynchronous streaming analysis often targets only subsets of large          
distributed data sets, a principal challenge lies in efficiently identifying and           
streaming only those data that are of scientific interest to its consumer. Such remote              
filtering and sampling tasks may map well to active storage systems which can             
perform data processing and indexing without requiring wholesale data transfer to           
the computing facility. However, programming models and APIs to perform these           
tasks are not well defined beyond existing relational and non-relational database           
interfaces. 
 
This lack of well defined models and semantics can be generalized to other aspects              
of streaming data analysis in general. While the high-energy physics community has            
demonstrated successes with the XROOTD framework, such successes remain         
exceptional in all but the largest experimental and observational scientific          
communities. A common set of access semantics across different data sources have            
not been identified, and the data models used to store and represent these data are               
also widely varied across disciplines. While efforts such as HDF5's SWMR mode are             
making progress towards defining a meaningful data model and access API, it still             
relies on a network file system to provide a protocol for streaming data. 

6 Supporting Activities 
This section is taken, verbatim, from the 2015 workshop report. Many of the             
activities described, seemingly, continue to remain though particular examples may          
be dated. The final report will contain an updated version as modified by input from               
the attendees. 
 
Although the workshop did not have a dedicated session on supporting activities for             
SSIO research, throughout the workshop supporting activities were called out as           
requirements for the research community in order to perform the needed research.            
While these topics are not research activities, the workshop attendees saw them as             
necessary ingredients to inform, enable, and sustain research into SSIO areas. 
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The supporting activities that were discussed focused on three themes. The first was             
the availability of forward-looking (at reasonable scale) computing and storage          
resources (testbeds) on which realistic experiments associated with SSIO R&D          
topics could be performed. The second theme was the need for highly documented             
operational data of existing leading-edge computing systems, network systems,         
storage systems, and their workloads. Failure, performance, and usage-related data          
in an understandable, clean, and documented form were all deemed essential in            
order to assist SSIO researchers with deep understanding of modern SSIO problem            
spaces and their projection to future systems. The third theme was educational            
support to enable better understanding of HPC SSIO problems. 
 

6.1 Computing, Networking, and Storage Resources 
 
[Introductory text here] 
 
State of the Art 
Several capabilities were identified as desirable for ensuring the availability of           
computing and storage resources. Cloud-oriented systems research mechanisms        
such as Chameleon [Chameleon n.d.] and Cloud Lab [CloudLab2015] were thought           
to have some utility in providing computing resources but are limited to R&D that              
can be run in a cloud-based environment. The NSF GENI [Geni2006] suite            
supporting research in networking was also mentioned as a potentially useful           
method of enabling related SSIO research, especially research involving         
long-distance networking. Other, more HPC-oriented resources such as the         
DOE/NNSA/LLNL Hyperion [Hyperion n.d.] and the NSF/DOE/NNSA/LANL PRObE        
[PRObE n.d.] systems were also mentioned as useful; however, these systems are            
likely insufficient for future SSIO research without expansion of the types of            
hardware and experiments they will support. Hyperion is not managed for openly            
competed research for extreme-scale computing, but its hardware is relatively new.  
PRObE is the only resource that is specifically designed for researchers to have full              
access all the way to the hardware and to allow root access for reasonably long               
periods of time. This ability to have full root access to the real, not virtual, testbed                
hardware is important. Because PRObE utilizes retired DOE hardware, however, the           
architectures are not well suited for future research. The need is really a             
combination of new and renewed frequently hardware in an openly competed for            
resource that allows access all the way to the hardware. Also needed is coordination              
with efforts in advanced architecture, as well as future software stack development. 
 
Challenges 
The lack of modern and periodically renewed, large-scale testbed computing          
environments is a significant challenge, and this includes in-system and off-system           
storage and the ability to give users bare metal root access. PRObE and Hyperion do               
provide some aspects of this need area, but they do not extend to enough              
researchers and are not always modern enough to satisfy the need. The ability to try               
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out new hardware mechanisms is also a requirement. Neither PRObE nor Hyperion            
is funded specifically to assist the national SSIO research community. Root access to             
bare metal hardware is needed in order to support reproducibility in system-level            
experimentation. Neither facility is rich with instrumentation tools, fault injectors,          
or other generally useful testing tools. 

 

6.2 Availability of Highly Documented Operational Data 
 
[Introductory blurb here] 
 
State of the Art 
Several facilities are already making well-documented operational data available.         
Among the releases are data from LANL [LANL Data n.d.] and NERSC [NERSC Data              
n.d.]. The LANL failure data release represented the largest operational failure data            
release done in two decades when it was released in 2006. It came with FAQs, and                
much care was taken to clean the data well.  
 
Storage-oriented data is provided by the large-scale Sandia trace data [Sandia Data            
n.d.] and the Argonne Darshan usage-related data [Carns2013, ANL Data n.d.]. Not            
only is the Darshan data an example of well-produced data, but it also represents a               
usable tool by HPC sites to assist with data collection. Additionally, storage system             
namespace statistics are provided by the DOE Petascale Data Storage Institute’s           
FSStats effort [Felix2011, PDSI FSStats Data n.d.]. Included are data from many HPC             
sites, a tool for collecting the data, and even a multisite clearinghouse for making the               
data available. BackBlaze also released a sizable data collection tracking hard disk            
failures over time [BackBlaze2015]. 
 
Challenges 
A major challenge in this area is funding incentive for researchers to create tools to               
assist HPC sites to accurately produce, curate, and provide operational data           
(including SSIO-related data) without adversely affecting production operation.        
Data involving operations, failure, repair, use, and performance, for all layers of            
storage and for both data and metadata, is needed in order to engage the full SSIO                
research community. Ideally, data would span from applications, complex         
workflows, and all other uses of storage down to mechanisms including           
management of the SSIO systems themselves. This data would be provided in a             
consistent way over many years, and it would be periodically updated. 
 
Funding also is needed in order to pay for collection, curation, and broad             
dissemination of this operational data. If the data is not well cared for and is not                
periodically updated to current thinking and architectures, then the full community           
cannot engage, and leverage will be lost. 
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6.3 Educational Support 
 
Support for education in the SSIO areas includes tutorials at conferences and            
workshops and materials suitable for classroom teaching, such as reference books. 
 
State of the Art 
Tutorials such as the Supercomputing Conference recurring tutorial “Parallel I/O In           
Practice” [Parallel I/O Tutorial n.d.] and recurring informative workshops such as           
the Supercomputing Conference Parallel Data Storage Workshop [PDSW n.d.]         
represent state of the art in SSIO educational outreach. Additionally, textbook           
documentation about SSIO research is best exemplified by “High Performance          
Parallel I/O” [Koziol2014], “Parallel I/O for High Performance Computing”         
[May2001], and “Scalable Input/Output: Achieving System Balance” [Reed2004].  
 
Challenges 
For the most part, textbook creation and, to a great extent, educational outreach             
activities are not funded for SSIO researchers or SSIO experts at HPC sites.  
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7 Glossary 
 
ADIOS Adaptive I/O System 
ANL Argonne National Laboratory 
ASC Advanced Simulation and Computing  
ASCR Advanced Scientific Computing Research 
CAP Consistency, Availability, and Partition tolerance 
CMU Carnegie Mellon University 
CORAL A collaboration between ANL, LLNL, and ORNL to acquire advanced          

computing resources 
DOE Department of Energy 
EOD Experimental and Observational Data 
FSIO File Systems and I/O 
GPFS General Parallel File System 
HACC Hardware/Hybrid Accelerated Cosmology Code 
HAMR Heat-Assisted Magnetic Recording 
HDF Hierarchical Data Format 
HEC FSIO High End Computing File Systems and I/O 
HPC High Performance Computing 
HPSS High Performance Storage System 
HSM Hierarchical Storage Management 
I/O Input/Output 
IOR Interleaved Or Random 
LANL Los Alamos National Laboratory 
LBNL Lawrence Berkeley National Laboratory 
LLNL Lawrence Livermore National Laboratory 
LWFS Light Weight File System 
MDS MetaData Server 
MIMD Multiple Instruction Multiple Data 
MPMD Multiple Program Multiple Data 
NERSC National Energy Research Scientific Computing Center 
NNSA National Nuclear Security Administration 
NSF National Science Foundation 
NVRAM Non-Volatile Random Access Memory 
NVMe Non-Volatile Memory express (see NVMHCIS) 
NVMHCIS Non-Volatile Memory Host Controller Interface Specification 
ORNL Oak Ridge National Laboratory 
PDSI Petascale Data Storage Institute 
PDSW Petascale Data Storage Workshop 
PLFS Parallel Log-structured File System 
PNNL Pacific Northwest National Laboratory 
POSIX Portable Operating System Interface 
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PRObE Parallel Reconfigurable Observational Environment 
QoS Quality of Service 
RAID Redundant Array of Independent Disks 
RAS Reliability, Availability, and Serviceability 
RMA Remote Memory Access 
SIMD Single Instruction Multiple Data 
SNL Sandia National Laboratories 
SSD Solid State Disk 
SSIO Storage System and I/O 
UQ Uncertainty Quantification 
XDD Command line tool for measuring I/O performance 
  

73 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



8 References 
 
[ATLAS2017] ATLAS Collaboration. Search for R-parity-violating      
supersymmetric particles in multi-jet final states produced in p--p collisions          
at sqrt(s) = 13 TeV using the ATLAS detector at the LHC. CERN-EP-2017-298.             
http://arxiv.org/abs/arXiv:1804.03568 
 
[Abadi2016] Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy          
Davis, Jeffrey Dean, Matthieu Devin et al. "Tensorflow: a system for large-scale            
machine learning." In OSDI, vol. 16, pp. 265-283. 2016. 
 
[Abbasi2010] Abbasi, Hasan, et al. "Datastager: scalable data staging services          
for petascale applications." Cluster Computing 13.3 (2010): 277-290. 
 
[Abolfathi2018] Abolfathi, B. et al. 2018. "The Fourteenth Data Release of the            
Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon           
Oscillation Spectroscopic Survey and from the Second Phase of the Apache           
Point Observatory Galactic Evolution Experiment." The Astrophysical Journal        
Supplement Series 235 (2). 
 
[Acharya1998] Acharya, Anurag, Uysal, Mustafa, and Saltz, Joel. “Active disks:          
Programming model, algorithms and evaluation.” In Proceedings of        
ASPLOS'98. 1998.  

[Adams2012] Adams, I. A.; Madden, B. A.; Frank, J. C.; Storer, M. W.; Miller, E. L.;                
Harano, G. “Usage behavior of a large-scale scientific archive.” In Proceedings           
of SC12, Nov. 2012. 

[Adelmann2005] Adelmann, A., R. D. Ryne, J. M. Shalf, and C. Siegerist. "H5part: A              
portable high performance parallel data interface for particle simulations." In          
Proceedings of the Particle Accelerator Conference, 2005. PAC 2005, pp. 4129-4131.           
IEEE, 2005. 
  
[Agelastos2014] Agelastos, Anthony, et al. “The Lightweight Distributed Metric         
Service: A scalable infrastructure for continuous monitoring of large scale          
computing systems and applications.” In Proceedings of the International         
Conference for High Performance Computing, Networking, Storage and        
Analysis, SC ’14, pages 154–165, 2014. 
 
[Aghayev2015] A. Aghayev and P. Desnoyers. Skylight—A Window on Shingled 
Disk Operation. In the proceedings of the 13th USENIX Conference on File and 
Storage Technologies (FAST 15) , pages 135–149, 2015. 

74 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://arxiv.org/abs/arXiv:1804.03568


 
[Aghayev2017] Abutalib Aghayev, Theodore Ts’o, Garth Gibson and Peter 
Desnoyers. Evolving EXT4 for Shingled Disks. In the proceedings of the 15th 
USENIX Conference on File and Storage Technologies (FAST ’17), 2017. 
[Ainsworth2017] Mark Ainsworth, Scott Klasky, and Ben Whitney. Compression         
using lossless decimation: Analysis and application. SIAM Journal on Scientific          
Computing, 39(4):B732–B757, August 2017. 
 
[Alagiannis2014] I. Alagiannis, S. Idreos, and A. Ailamaki. “H2o: A hands-free           
adaptive store.” In SIGMOD ’14, Snowbird, UT, June 22-27, 2014. 
 
[Albrecht2017] Albrecht, J., et al. A Roadmap for HEP Software and Computing            
R&D for the 2020s. HEP Software Foundation. HSF-CWP-2017-01. December         
15, 2017. 
 
[Ali2009] Ali, Nawab, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert            
Latham, Robert Ross, Lee Ward, and P. Sadayappan. "Scalable I/O forwarding           
framework for high-performance computing systems." In IEEE International        
Conference on Cluster Computing and Workshops, 2009. CLUSTER'09, pp. 1-10.          
IEEE, 2009. 
 
[Allen2004] Bruce Allen. Monitoring Hard Disks with SMART. In the Linux           
Journal, January 1, 2004. 
 
[Alted2010] Alted, Francesc. "Why modern CPUs are starving and what can be done             
about it." Computing in Science & Engineering 12, no. 2 (2010): 68-71. 
 
[Altintas2004] Altintas, I. and Berkley, C. and Jaeger, E. and Jones, M. and Ludascher,              
B. and Mock, S. Kepler “An extensible system for design and execution of scientific              
workflows.” In Proceedings of the 16th International Conference on Scientific and           
Statistical Database Management, 2004, pp. 423-424. 
 
[Alverson2012] Bob Alverson. Cray High Speed Networking. In the 20th IEEE           
Symposium on High Performance Interconnects (Hot Interconnects), 2012. 
 
[Ames2011] Sasha Ames, Maya B. Gokhale, and Carlos Maltzahn. QMDS: A File            
System Metadata Management Service Supporting a Graph Data Model-Based         
Query Language. In Proceedings of the 6th IEEE International Converence on           
Networking, Architecture and Storage (NAS), 2011, pp. 268, 277, July 28-30,           
2011. 
 
[Amiri2000] Amiri, Khalil, et al. "Dynamic function placement for         
data-intensive cluster computing." USENIX Annual Technical Conference,       
General Track, 2000. 

75 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



 
[Anderson2000] Anderson, Darrell C., Jeffery S. Chase, and Amin M. Vahdat.           
"Interposed request routing for scalable network storage." In Proceedings of the 4th            
conference on Symposium on Operating System Design & Implementation-Volume         
4. USENIX Association, 2000. 
 
[Anderson2018] Patrick Anderson, Richard Black, Ausra Cerkauskaite,       
Andromachi Chatzieleftheriou, James Clegg, Chris Dainty, Raluca Diaconu,        
Austin Donnelly, Rokas Drevinskas, Alexander L. Gaunt, Andreas Georgiou,         
Ariel Gomez Diaz, Peter G. Kazansky, David Lara, Sergey Legtchenko, Sebastian           
Nowozin, Aaron Ogus, Douglas Phillips, Antony Rowstron, Masaaki Sakakura,         
Ioan Stefanovici, Benn Thomsen, Lei Wang, Hugh Williams, and Mengyang          
Yang. Glass: A New Media for a New Era? In the 10th USENIX Workshop on Hot                
Topics in Storage and File Systems, 2018. 
 
[ANL Data n.d.] ALCF I/O data repository http://press3.mcs.anl.gov/darshan/data/ 
 
[Arkin2016] Arkin, A., et al. Biological and Environmental Research Exascale          
Requirements Review, Advanced Scientific Computing Research and Biological        
and Environmental Research, DOE Office of Science, Rockville, Maryland,         
March 28-31, 2016. 
 
[Arpaci-Dusseau1999] Arpaci-Dusseau, Remzi H., et al. "Cluster I/O with River:          
Making the fast case common." In Proceedings of the sixth workshop on I/O in              
Parallel and Distributed Systems. ACM, 1999. 
 
[Arpaci-Dusseau2006] Arpaci-Dusseau, Remzi H., Andrea C. Arpaci-Dusseau, Benjamin        
R. Liblit, Miron Livny, and Michael M. Swift. “Formal failure analysis for storage             
systems.” High End Computing University Research Activity NSF 06-503 (2006) 
 
[Arpaci-Dusseau2014] Remzi Arpaci-Dusseau, Andrea Arpaci-Dusseau, Carlos      
Maltzahn: Reproducible evaluation of HPC Systems. SSIO White Paper, Dec. 2014. 
 
[Bethel2015] Bethel, E, et al. Management, Analysis, and Visualization of          
Experiment and Observational Data (EOD) - The Convergence of Data and           
Computing Workshop Final Report. Office of Advanced Scientific Computing         
Research, DOE Office of Science Bethesda, Maryland, September 29–October 1,          
2015. 
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/ascr
-eod-workshop-2015-report_160524.pdf 
 
[Aviles-Gonzalez2014] Ana Avilés-González, Juan Piernas, and Pilar       
González-Férez.  
Scalable metadata management through OSD+ devices. International Journal        
of Parallel Programming 42.1 (2014): 4-29. 

76 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://press3.mcs.anl.gov/darshan/data/
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/ascr-eod-workshop-2015-report_160524.pdf
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/ascr-eod-workshop-2015-report_160524.pdf


 
[BXI2017] Bull Atos Technologies. Bull eXascale Interconnect for HPC systems.          
https://atos.net/wp-content/uploads/2017/10/W-BXI-en1-web-1.pdf 
accessed on August 1, 2018. 
 
[BackBlaze2015] https://www.backblaze.com/hard-drive-test-data.html 
 
[Barseghian2010] Derik Barseghian, Ilkay Altintas, Matthew B. Jones, Daniel Crawl,          
Nathan Potter , James Gallagher, Peter Cornillon, Mark Schildhauer, Elizabeth T.           
Borer, Eric W. Seabloom, Parviez R. Hosseini “Workflows and extensions to the            
Kepler Scientific Workflow System to support environmental sensor Data access          
and analysis.” Ecological Informatics 5 (2010): 42-50. 
 
[Barton2013] E. Barton. Lustre* -–Fast forward to exascale. Lustre User Group           
Summit 2013, March 2013. 
 
[Barton2014] Barton, Eric, Bent, John, and Quincey Koziol. “Fast forward          
storage and IO program documents. “      
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Pr
ogram+Documents. 
 
[Baru1998] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael         
Wan. "The SDSC storage resource broker." In Proceedings of the 1998           
conference of the Centre for Advanced Studies on Collaborative Research, p. 5.            
IBM Press, 1998. 
 
[Bauer2012] Bauer, Michael, Sean Treichler, Elliott Slaughter, and Alex Aiken.          
"Legion: expressing locality and independence with logical regions." In         
Proceedings of the international conference on High Performance Computing,         
Networking, Storage and Analysis, p. 66. IEEE Computer Society Press, 2012. 
 
[Bauer2014] M. Bauer. “Legion: Programming distributed heterogeneous       
archtectures with logical regions.” Ph.D. dissertation, Stanford University, December         
2014. 
 
[Bautista-Gomez2011] Bautista-Gomez, Leonardo, Seiji Tsuboi, Dimitri      
Komatitsch, Franck Cappello, Naoya Maruyama, and Satoshi Matsuoka. "FTI:         
high performance fault tolerance interface for hybrid systems." In         
Proceedings of 2011 International Conference for High Performance        
Computing, Networking, Storage and Analysis, p. 32. ACM, 2011. 
 
[Beck2002] Beck, Micah, Terry Moore, and James S. Plank. "An end-to-end approach            
to globally scalable network storage." ACM SIGCOMM Computer Communication         
Review 32. 4 (2002).  
 

77 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://atos.net/wp-content/uploads/2017/10/W-BXI-en1-web-1.pdf
https://www.backblaze.com/hard-drive-test-data.html


[Behzad2014a] Babak Behzad, Surendra Byna, Stefan Wild, Prabat, and Marc          
Snir. “Improving Parallel I/O Autotuning with Performance Modeling.” In the          
23rd International ACM Symposium on High Performance Distributed        
Computing. June 2014. 
 
[Behzad2014b] Babak Behzad, Hoang-Vu Dang, Farah Hariri, Weizhe Zhang, and          
Marc Snir. “Automatic generation of I/O kernels for HPC applications.” Parallel           
Data Storage Workshop (PDSW) 2014. 
 
[Behzad2015] Babak Behzad, Surendra Byna, Stefan Wild, Mr Prabhat and 
Marc Snir. Dynamic Model-driven Parallel I/O Performance Tuning. IEEE 
Cluster , Sept.2015. 
 
[Bennett2012] Bennett, Janine C., Hasan Abbasi, P-T. Bremer, Ray Grout, Attila           
Gyulassy, Tong Jin, Scott Klasky et al. "Combining in-situ and in-transit processing to             
enable extreme-scale scientific analysis." In International Conference for High         
Performance Computing, Networking, Storage and Analysis (SC), 2012, pp. 1-9.          
IEEE, 2012. 
 
[Bent2004] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau “Explicit          
Control in a Batch-Aware Distributed File System.” In Proceedings of the First            
USENIX/ACM Conference on Networked Systems Design and Implementation,        
March 2004. 
 
[Bent2009] Bent, John, Garth Gibson, Gary Grider, Ben McClelland, Paul          
Nowoczynski, James Nunez, Milo Polte, and Meghan Wingate. "PLFS: A checkpoint           
filesystem for parallel applications." In Proceedings of the Conference on High           
Performance Computing Networking, Storage and Analysis, p. 21. ACM, 2009. 
 
[Bent2012] John Bent, Sorin Faibish, James Ahrens, Gary Grider, John Patchett,           
Percy Tzelnic, and Jon Woodring. “Jitter-free co-processing on a prototype          
exascale storage stack.” In 28th IEEE Symposium on Massive Storage Systems           
and Technologies, MSST 2012, 2012. 
 
[Bent2016] John Bent, Brad Settlemyer, and Gary Grider, “Serving Data to the            
Lunatic Fringe: The Evolution of HPC Storage,” ;login: The USENIX Magazine,           
Summer 2016, 41(2). 
 
[Berger1989] Berger, Marsha J., and Phillip Colella. "Local adaptive mesh          
refinement for shock hydrodynamics." Journal of Computational Physics 82.1         
(1989): 64-84. 
 
[Betke2017] Betke E., Kunkel J. (2017) Real-Time I/O-Monitoring of HPC          
Applications with SIOX, Elasticsearch, Grafana and FUSE. In: Kunkel J., Yokota           

78 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



R., Taufer M., Shalf J. (eds) High Performance Computing. ISC High           
Performance 2017. Lecture Notes in Computer Science, vol 10524. 
 
[Bhimji2017] Bhimji, W., et al. Deep Neural Networks for Physics Analysis on            
low-level whole-detector data at the LHC. arXiv preprint arXiv:1711.03573         
(2017). 
[Birman2007] Birman, Ken. "The promise, and limitations, of gossip         
protocols." ACM SIGOPS Operating Systems Review 41.5 (2007): 8-13. 
 
[Blackcomb n.d.] https://ft.ornl.gov/trac/blackcomb 
 
[Blomer2015] Blomer, Jakob, et al. "The evolution of global scale filesystems           
for scientific software distribution." Computing in Science & Engineering 17.6          
(2015): 61-71. 
 
[Bloom2015] K. Bloom, T. Boccali, B. Bockelman, D. Bradley, S. Dasu, J. Dost, F.              
Fanzago, I. Sfiligoi, A. M. Tadel, M. Tadel, C. Vuosalo, F. Wurthwein, A. Yagil, and               
M. Zvada, “Any Data, Any Time, Anywhere: Global Data Access for Science,” in             
2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC),          
2015, pp. 85–91. 
 
[Boboila2012] Boboila, Simona, Youngjae Kim, Sudharshan S. Vazhkudai,        
Peter Desnoyers, and Galen M. Shipman. "Active flash: Out-of-core data          
analytics on flash storage." In IEEE 28th Symposium on Mass Storage Systems            
and Technologies (MSST), 2012, pp. 1-12. IEEE, 2012. 
 
[Bockelman2018] Brian Bockelman. CMS IO Overview. HEP-CCE: Scalable IO         
for Energy and Intensity Frontier Experiments. Argonne, IL, August 23, 2018. 
 
[Bonnie2018] David Bonnie. Massive Scale Metadata Efforts and Solutions. In 
the Proceedings of the 34th International Conference on Massive Storage 
Systems and Technology (MSST 2018), 2018. 
 
[Bonoli2015] Report of the Workshop on Integrated Simulations for Magnetic          
Fusion Energy Sciences Sponsored by the Office of Fusion Energy Sciences and            
the Office of Advanced Scientific Computing Research, Rockville, MD, June 2-4,           
2015. 
 
[Bornholt2016] James Bornholt, Randolph Lopez, Douglas Carmean, Luis Ceze,         
Georg Seelig, and Karin Strauss. A DNA-based Archival Storage System. ASPLOS           
2016: International Conference on Architectural Support for Programming        
Languages and Operating Systems, 2016 
 
[Braam2004] Braam, Peter J. "The Lustre storage architecture." 2004. 
 

79 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://ft.ornl.gov/trac/blackcomb


[Braam2017] Peter Braam, David Bonnie, “Campaign Storage,” MSST 2017. 
 
[Brewer2015] Eric A. Brewer. Kubernetes and the path to cloud native. In the             
Proceedings of the Sixth ACM Symposium on Cloud Computing (SOCC ‘15),           
Keynote, 2015. 
 
[Brinkmann2014] Brinkmann, A., Cortes, T., Falter, H., Kunkel, J., and          
Narasimhamurthy, S. “E10 – Exascale IO.” E10 Working Group Technical          
Report. 2014 .   
https://hps.vi4io.org/_media/research/publications/2014/weeibcfkn14-whit
epaper_e10_exascale_io.pdf 
 
[Broquedis2010] Broquedis, Francois, et. al. “HWloc: A generic framework for          
managing hardware affinities in HPC applications.” In Proceedings of the 18th           
Euromicro International Conference on Parallel, Distributed and Network-Based        
Computing (PDP 2010), 2010. 
 
[Brun1997] Brun, Rene, and Fons Rademakers. "ROOT—an object oriented         
data analysis framework." Nuclear Instruments and Methods in Physics         
Research Section A: Accelerators, Spectrometers, Detectors and Associated        
Equipment 389.1 (1997): 81-86. 
 
[Bugra2008] Bugra Gedik , Henrique Andrade , Kun-Lung Wu , Philip S. Yu ,              
Myungcheol Doo “SPADE: The System S Declarative Stream Processing Engine.” In           
Proceedings of the 2008 ACM SIGMOD international conference on Management of           
data, June 9-12, 2008, Vancouver, Canada. 
 
[Byna2008] Byna, Suren, Y. Chen, X. H. Sun, R. Thakur and W. Gropp, "Parallel              
I/O prefetching using MPI file caching and I/O signatures," 2008 SC -            
International Conference for High Performance Computing, Networking,       
Storage and Analysis, Austin, TX, 2008, pp. 1-12. 
 
[CMS n.d.] The Compact Muon Solenoid experiment at CERN. http://cms.cern/ 
 
[Cachin2006] Cachin, Christian, and Stefano Tessaro. "Optimal resilience for         
erasure-coded Byzantine distributed storage." International Conference on       
Dependable Systems and Networks, 2006. DSN 2006. IEEE, 2006. 
 
[Callahan2006] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E.        
Scheidegger, Cláudio T. Silva, and Huy T. Vo. Vistrails: Visualization meets data          
management. In Proceedings of the 2006 ACM SIGMOD International         
Conference on Management of Data, pp. 745-747, 2006. 
 
[Canon2016] Shane Canon and Doug Jacobsen. Shifter: Containers for HPC. In           
the Proceeding of the Cray Users’ Group, 2016. 

80 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://cms.cern/


 
[Carey2014] Carey, Varis, Hasan Abbasi, Ivan Rodero, and Hemanth Kolla.          
"Sensitivity analysis for time dependent problems: optimal       
checkpoint-recompute HPC workflows." In Proceedings of the 9th Workshop         
on Workflows in Support of Large-Scale Science, pp. 20-30. IEEE Press, 2014. 
 
[Carlson2016] Carlson, J., et al. Exascale Requirements Review for Nuclear          
Physics, Advanced Scientific Computing Research and Nuclear Physics, DOE         
Office of Science, Gaithersburg, Maryland, June 15-17, 2016. 
 
[Carns2000] Carns, Philip, Ligon, Walter, Ross, Robert B., and Rajeev Thakur.           
"PVFS: A parallel file system for Linux clusters." In Proceedings of the 4th             
annual Linux Showcase and Conference, pp. 391-430. 2000. 
 
[Carns2009] Carns, Philip, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang,           
and Katherine Riley. “24/7 characterization of petascale I/O workloads.” In          
Proceedings of 2009 Workshop on Interfaces and Architectures for Scientific Data           
Storage. IEEE, 2009. 
 
[Carns2011] Carns, Philip, Kevin Harms, William Allcock, Charles Bacon,         
Samuel Lang, Robert Latham, and Robert Ross. “Understanding and improving          
computational science storage access through continuous characterization.”       
ACM Transactions on Storage 7.3 (2011):8. 
 
[Carns2013] Carns, Philip, et al. “Production I/O characterization on the Cray XE6.”            
In Proceedings of the Cray User Group meeting. Vol. 2013. 2013. 
 
[Caulfield2009] Caulfield, Adrian M., Laura M. Grupp, and Steven Swanson. "Gordon:           
using flash memory to build fast, power-efficient clusters for data-intensive          
applications." ACM SIGPLAN Notices 44.3 (2009): 217-228. 
 
[Chamberlain2007] Chamberlain, Bradford L., David Callahan, and Hans P. Zima.          
"Parallel programmability and the chapel language." International Journal of High          
Performance Computing Applications 21.3 (2007): 291-312. 
 
[Chameleon2015] https://www.chameleoncloud.org  
 
[Chang2008] Chang, Fay, et al. "Bigtable: A distributed storage system for           
structured data." ACM Transactions on Computer Systems (TOCS) 26.2 (2008):          
4. 
 
[Chang2016] Chang, C. S., et al. Fusion Energy Sciences Exascale Requirements           
Review, Advanced Scientific Computing Research and Fusion Energy Sciences,         
DOE Office of Science, Gaithersburg, Maryland, January 27-29, 2016. 
 

81 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.chameleoncloud.org/


[Charles2005] Charles, Philippe, Christian Grothoff, Vijay Saraswat, Christopher        
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar.           
"X10: An object-oriented approach to non-uniform cluster computing." ACM         
SIGPLAN Notices 40.10 (2005): 519-538. 
 
[Cheung2015] A. Cheung. “Towards creating application-specific database       
management systems.” In CIDR ’15, Asilomar, CA, January 4-7, 2015 
 
[Chou2011] Jerry Chou, Mark Howison, Brian Austin, Kesheng Wu, Ji Qiang,          
E. Wes Bethel, Arie Shoshani, Oliver Rübel, Prabhat, and Rob D. Ryne. Parallel           
index and query for large scale data analysis. In Proceedings of 2011            
International Conference for High Performance Computing, Networking,       
Storage and Analysis, number 30, pp, 1-30, November 2011. 
 
[Chuang1999] Chuang, J., and M. Sirbu. "Stor-serv: Adding quality-of-service to          
network storage." In Proceedings of Workshop on Internet Service Quality          
Economics. 1999. 
 
[Cidon2013] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John          
Ousterhout, and Mendel Rosenblum. Copysets: Reducing the Frequency of         
Data Loss in Cloud Storage. In the 2013 USENIX Annual Technical Conference,            
2013. 
 
[Clos1953] Clos, Charles (Mar 1953). "A study of non-blocking switching networks".           
Bell System Technical Journal 32.2 (2011): 406–424.       
doi:10.1002/j.1538-7305.1953.tb01433.x. ISSN 0005-8580. Retrieved 22 March      
2011. 
 
[CloudLab2015] https://www.cloudlab.us 
 
[Coburn2011] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, 
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: making 
persistent objects fast and safe with next-generation, non-volatile memories. 
In Proceedings of the sixteenth international conference on Architectural 
support for programming languages and operating systems (ASPLOS XVI), 
2011. 
 
[CoDesign] Scientific Discovery through Advanced Computing (SciDAC)       
Co-Design Centers. 
http://science.energy.gov/ascr/research/scidac/co-design/ 
 
[Colella2000] Colella, P., D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.                
Serafini, and B. Van Straalen. "Chombo software package for AMR          
applications-design document." 2000. 

82 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.cloudlab.us/
http://science.energy.gov/ascr/research/scidac/co-design/


 
[Condit2009] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin         
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O           
through byte-addressable, persistent memory. In Proceedings of the ACM         
SIGOPS 22nd symposium on Operating systems principles (SOSP '09). ACM,          
New York, NY, USA, 133-146. 
 
[Coral2018] Coral Collaboration, Coral-2 Benchmarks     
https://asc.llnl.gov/coral-2-benchmarks/ 
 
[Cori2015] Cori. http://www.nersc.gov/users/computational-systems/cori/   
accessed on August 1, 2018. 
 
[Cray2018] Cray Inc. Cray View for ClusterStor.       
https://www.cray.com/products/storage/clusterstor/view 
 
[Cray DataWarp n.d.]  
https://pubs.cray.com/content/S-2558/CLE%206.0.UP06/xctm-series-dataw
arptm-user-guide 
 
[Curry2012] M. L. Curry, R. Klundt, and H. L. Ward. Using the Sirocco file system for                
high-bandwidth checkpoints. Tech. rept. SAND2012-1087, Sandia National       
Laboratories, Albuquerque, NM, February 2012. 
 
[DAX2018] Direct Access for Files. 
https://www.kernel.org/doc/Documentation/filesystems/dax.txt accessed on 
August 1, 2018. 
 
[DDN2018] Data Direct Networks, DDN Insight Data Sheet.        
https://www.ddn.com/products/storage-monitoring-ddn-insight/ 
 
[Dagum1998] Dagum, Leonardo, and Ramesh Menon. "OpenMP: an industry         
standard API for shared-memory programming." Computational Science &        
Engineering, IEEE 5.1 (1998): 46-55. 
 
[Dai2014] Dong Dai, Robert B. Ross, Philip Carns, Dries Kimpe, Yong Chen.            
Using Property Graphs for Rich Metadata Management in HPC Systems. In           
Proceedings of the 9th Parallel Data Storage Workshop, vol. 11, IEEE, 2014. 
 
[Daly2006] Daly, John T. "A higher order estimate of the optimum checkpoint            
interval for restart dumps." Future Generation Computer Systems 22.3         
(2006): 303-312. 
 
[Damsel2014] Damsel: A Data Model Storage Library for Exascale Science.          
http://cucis.ece.northwestern.edu/projects/DAMSEL/ 

83 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://asc.llnl.gov/coral-2-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/
https://www.cray.com/products/storage/clusterstor/view
https://pubs.cray.com/content/S-2558/CLE%206.0.UP06/xctm-series-datawarptm-user-guide/libdatawarp---the-datawarp-api
https://pubs.cray.com/content/S-2558/CLE%206.0.UP06/xctm-series-datawarptm-user-guide/libdatawarp---the-datawarp-api
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
http://cucis.ece.northwestern.edu/projects/DAMSEL/


 
[Davidson2008] Susan B. Davidson and Juliana Freire. Provenance and        
scientific workflows: challenges and opportunities. In Proceedings of the 2008          
ACM SIGMOD International Conference on Management of Data, SIGMOD '08,          
pages 1345-1350. ACM, 2008. 
 
[Dawson1983] Dawson, J.M. "Particle simulation of plasmas.” Reviews of         
Modern Physics 55.2(1983): 403. Bibcode:1983RvMP...55..403D.     
doi:10.1103/RevModPhys.55.403. 
 
[Dean2008] Dean, J., & Ghemawat, S. MapReduce: Simplified data processing          
on large clusters. Communications of the ACM, 51.1 (2008): 107-113. 
 
[Declerck2014] Tina M Declerck. Using Robinhood to Purge Data from Lustre           
File Systems. In the Proceedings of the Cray Users’ Group, 2014. 
 
[Deelman2002] Ewa Deelman, James Blythe, Yolanda Gil and Carl Kesselman          
“Pegasus: Planning for Execution in Grids.” GriPhyN Technical Report 2002-20,         
2002. 
 
[Deelman2018] Deelman, Ewa, et al. "The future of scientific workflows." The           
International Journal of High Performance Computing Applications 32.1        
(2018): 159-175. 
 
[Deelman2008] Ewa Deelman, Miron Livny, Gaurang Mehta, Andrew Pavlo, Gurmeet          
Singh, Mei-Hui, Karan Vahi, R. Kent Wenger. “Pegasus and DAGMan from concept to             
execution: Mapping scientific workflows onto today’s cyberinfrastructure.” pp.        
56–74. IOS, Amsterdam, 2008. 
 
[DEEP n.d.] 
http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/
deep-networks-for-hep/ 
 
[DeFavereau2014] De Favereau, J., et al. "DELPHES 3: a modular framework           
for fast simulation of a generic collider experiment." Journal of High Energy            
Physics 2014.2 (2014): 57. 
 
[Degremont2013] Aurélien Degremont, Thomas Leibovici.     
http://cdn.opensfs.org/wp-content/uploads/2013/04/lug13-robinhood.pdf 

[Delgado2016] Delgado, R., “Why Your Data Scientist Isn’t Being More          
Inventive”, Dataconomy, Published on 15 March 2016. URL:        
http://dataconomy.com/2016/03/why-your-datascientist-isnt-being-more-in
ventive/,  accessed on August 31, 2018. 
 

84 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://pegasus.isi.edu/publications/ewa/pegasus_overview.pdf
http://pegasus.isi.edu/publications/ewa/pegasus_overview.pdf
http://pegasus.isi.edu/publications/ewa/pegasus_overview.pdf
http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/deep-networks-for-hep/
http://www.nersc.gov/users/data-analytics/data-analytics-2/deep-learning/deep-networks-for-hep/
http://dataconomy.com/2016/03/why-your-datascientist-isnt-being-more-inventive/
http://dataconomy.com/2016/03/why-your-datascientist-isnt-being-more-inventive/


[DeRoure2008] De Roure, D., Goble, C. and Stevens, R. “The design and realisation of              
the myExperiment virtual research environment for social sharing of workflows.”          
Future Generation Computer Systems 25 (2009): 561-567      
[doi:10.1016/j.future.2008.06.010] 

[Devarakonda2010] Devarakonda, R., Palanisamy, G., “Advancements in       
scientific data searching, sharing and retrieval”. URL:       
https://arxiv.org/pdf/1101.1252.pdf   
 
[DES2018] Dark Energy Survey - Data Management,       
https://des.ncsa.illinois.edu,  accessed on August 31, 2018. 
 
[Dickson2017] Dickson, James, , Steven A. Wright, Satheesh Maheswaran, J. A.           
Herdman, Duncan Harris, Mark C. Miller, and Stephen A. Jarvis,“Enabling          
portable I/O analysis of commercially sensitive HPC applications through         
workload replication.” in Cray User Group 2017 Proceedings (CUG2017) pp.          
1-14. 
 
[Dillow2011] Dillow, David A., et al. "I/O congestion avoidance via routing and            
object placement." In Proceedings of Cray User Group Conference (CUG 2011). 2011. 
 
[DiskSim n.d.] disksim. http://www.pdl.cmu.edu/DiskSim/ 
 
[Docan2012] Docan, Ciprian, Manish Parashar, and Scott Klasky. "DataSpaces:         
An interaction and coordination framework for coupled simulation        
workflows." Cluster Computing 15.2 (2012): 163-181. 
 
[DOE2018] DOE Policy for Digital Research Data Management.        
https://www.energy.gov/datamanagement/doe-policy-digital-research-data-
management  accessed on August 31, 2018. 
 
[Dong2013] Bin Dong, Suren Byna, and John Wu, "SDS: A Framework for Scientific             
Data Services." 8th Parallel Data Storage Workshop (PDSW) held in conjunction           
with SC13, 2013.  
 
[Dong2016] Bin Dong, Suren Byna, Kesheng Wu, Prabhat, Hans Johansen,          
Jeffrey N. Johnson, Noel Keen, “Data Elevator: Low-Contention Data Movement          
in Hierarchical Storage System.” HiPC 2016: 152-161. 
 
[Dorier2012] Dorier, Matthieu, Gabriel Antoniu, Franck Cappello, Marc Snir, and          
Leigh Orf. "Damaris: How to efficiently leverage multicore parallelism to achieve           
scalable, jitter-free I/O." In IEEE International Conference on Cluster Computing, pp.           
155-163. IEEE, 2012. 
 

85 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://dx.doi.org/10.1016/j.future.2008.06.010
https://arxiv.org/pdf/1101.1252.pdf
https://des.ncsa.illinois.edu/
http://www.pdl.cmu.edu/DiskSim/
https://www.energy.gov/datamanagement/doe-policy-digital-research-data-management
https://www.energy.gov/datamanagement/doe-policy-digital-research-data-management
https://dblp.uni-trier.de/pers/hd/w/Wu:Kesheng


[Dorier2014] Dorier, Matthieu, S. Ibrahim, G. Antoniu and R. Ross, "Omnisc'IO:           
A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction,"          
SC14: International Conference for High Performance Computing, Networking,        
Storage and Analysis, New Orleans, LA, 2014, pp. 623-634. 
 
[Dosanjh2014] Dosanjh, Sudip. “Cori (NERSC-8).” Presented at the 2014 Scientific          
Discovery Through Advanced Computing (SciDAC-3) Principal Investigator Meeting.        
Washington, DC, August 2014. 
 
[Dorigo2005] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “XROOTD - A             
highly scalable architecture for data access,” WSEAS Trans. Comput., vol. 4, no.            
4, p. 348, 2005. 
 
[Draper1999] Draper, Jesse M., David E. Culler, Kathy Yelick, Eugene Brooks, and            
Karen Warren. “Introduction to UPC and language specification.” Center for          
Computing Sciences, Institute for Defense Analyses, 1999. 
 
[Duro2014] Francisco Rodrigo Duro, Javier Garcia Blas, Florin Isaila, Justin M.           
Wozniak, Jesús Carretero and Robert Ross. “Exploiting data locality in Swift/T           
workflows using Hercules.” In Proceedings of the Network for Sustainable Ultrascale           
Computing Workshop, 2014. 
 
[Ekanayake2008] Ekanayake, Jaliya, Shrideep Pallickara, and Geoffrey Fox.        
"Mapreduce for data intensive scientific analyses." In IEEE Fourth International          
Conference on eScience, 2008, pp. 277-284. IEEE, 2008. 
 
[Ellexus2018] https://www.ellexus.com/ 
 
[Elnozahy2002] Elnozahy, Elmootazbellah Nabil, et al. "A survey of         
rollback-recovery protocols in message-passing systems." ACM Computing       
Surveys (CSUR) 34.3 (2002): 375-408. 
 
[ESS-DIVE2018] ESS-DIVE - Environmental Systems Science Data       
Infrastructure for a Virtual Ecosystem, http://ess-dive.lbl.gov, accessed on        
August 31, 2018. 
 
[Eugster2003] Eugster, Patrick Th, et al. "The many faces of publish/subscribe."           
ACM Computing Surveys (CSUR) 35.2 (2003): 114-131. 
 
[Fahey2010] Mark Fahey, Nick Jones, and Bilel Hadri. The Automatic Library           
Tracking Database. In Proceedings of the Cray User Group, 2010.  
 
[Felderman1994] Felderman, Robert, et al. "ATOMIC: A high-speed local         
communication architecture." Journal of High Speed Networks 3.1 (1994): 1-29. 
 

86 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.ellexus.com/
http://ess-dive.lbl.gov/


[Feldman2013] T. Feldman and G. Gibson. Shingled Magnetic Recording: Areal 
Density Increase Requires New Data Management. USENIX ;login issue, 38(3), 
2013. 
 
[Felix2006] Felix, Evan J., et al. "Active storage processing in a parallel file             
system." In Proceedings of the 6th LCI International Conference on Linux           
Clusters: The HPC Revolution. 2006. 
 
[Felix2011] Felix, E. “Environmental molecular sciences laboratory: Static survey of          
file system statistics.” [2011-02-23]. http://www.pdsi-scidac.org/fsstats/index,     
html 
 
[Filguiera2014] Rosa Filguiera, Iraklis Klampanos, Amrey Krause, Mario David,         
Alexander Moreno, Malcolm Atkinson “dispel4py: A Python framework for         
data-intensive scientific computing.” In Proceedings of the 2014 International         
Workshop on Data Intensive Scalable Computing Systems, pp. 9-16. 
 
[FireWorks2013] FireWorks workflow software,    
http://pythonhosted.org/FireWorks. [doi: 10.5281/zenodo.14096] 
 
[Flynn2011] Flynn, Michael. "Flynn’s taxonomy." In Encyclopedia of Parallel         
Computing, pp. 689-697. Springer, 2011. 
 
[Folk1999] Folk, Mike, Albert Cheng, and Kim Yates. "HDF5: A file format and             
I/O library for high performance computing applications." In Proceedings of          
Supercomputing, vol. 99, pp. 5-33. 1999. 
 
[Fox2016] Fox, G., et al. STREAM2016: Streaming Requirements, Experience,         
Applications and Middleware Workshop Final Report. Office of Advanced         
Scientific Computing Research, DOE Office of Science, Tysons, Virginia, March          
22-23, 2016. 
 
[Freche2009] Freche, Jens, Wolfgang Frings, and Godehard Sutmann.        
"High-throughput parallel-I/O using SIONlib for mesoscopic particle dynamics        
simulations on massively parallel computers." In PARCO, pp. 371-378. 2009. 
 
[Freitas2008] R. F. Freitas and W. W. Wilcke, "Storage-class memory: The next            
storage system technology," in IBM Journal of Research and Development, vol.           
52, no. 4.5, pp. 439-447, July 2008. 
 
[Frings2007] Frings, Wolfgang, and Morris Riedel. "LLview: User-level        
monitoring in computational grids and e-Science infrastructures." In German         
e-Science Conference. 2007. 
 

87 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



[Gainaru2011] Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and Bill         
Kramer “Event log mining tool for large scale HPC systems.” In Euro-Par 2011             
Parallel Processing, pp. 52–64. Springer, 2011. 
 
[Gainaru2015] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert and M.             
Snir, "Scheduling the I/O of HPC Applications Under Congestion," 2015 IEEE           
International Parallel and Distributed Processing Symposium, Hyderabad,       
2015, pp. 1013-1022. 
 
[Gal05] Eran Gal and Sivan Toledo. Algorithms and data structures for flash            
memories. ACM Computing Surveys, 37(2), 2005. 
 
[Gamell2013] M. Gamell, I. Rodero, M. Parashar and S. Poole, “Exploring energy and             
performance behaviors of data-intensive scientific workflows on systems with deep          
memory hierarchies.” In Proceedings of 20th Annual International Conference on          
High Performance Computing (HiPC 2013), IEEE Computer Society Press,         
Hyderabad, India, December 2013.  
 
[GenZ2018] The GenZ Consortium. https://genzconsortium.org/ accessed on       
August 1, 2018.  
 
[Geni2006] GENI, NSF. Global environment for network innovations.        
[2007-12-17][2008-06-05]. http://www.geni.net 
 
[Goodell2012] Goodell, David, Seong Jo Kim, Robert Latham, Mahmut         
Kandemir, and Robert Ross. "An evolutionary path to object storage access." In            
High Performance Computing, Networking, Storage and Analysis (SCC), 2012         
SC Companion, pp. 36-41. IEEE, 2012. 
  
[Goodell2015] Dave Goodell, Paul Grun, Sean Hefty, Howard Pritchard, Bob 
Russell, Jeff Squyres, Sayantan Sur. A Brief Introduction to Openfabrics’ 
Interfaces libfabrics. In the 23rd IEEE Symposium on High Performance 
Interconnects (Hot Interconnects), 2015. 
 
[Greenberg2015] Greenberg, Hugh, John Bent, and Gary Grider. "MDHIM: A          
Parallel Key/Value Framework for HPC." HotStorage. 2015. 
 
[Groves2016] Groves, T, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen            
and D. C. Arnold, "(SAI) Stalled, Active and Idle: Characterizing Power and            
Performance of Large-Scale Dragonfly Networks," 2016 IEEE International        
Conference on Cluster Computing (CLUSTER), Taipei, 2016, pp. 50-59. 
 
[Gu2011] Gu, J., Katramatos, D, Liu, X, Shoshani, A, Sim, A, Yu, D, Bradley , S,                
McKee, S, StorNet: Co-Scheduling of End-to-End Bandwidth Reservation on         

88 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://genzconsortium.org/


Storage and Network Systems for High-Performance Data Transfers. IEEE         
INFOCOM 2011 High-Speed Networks Workshop (HSN 2011), 2011. 
 
[Gupta2010] C. Gupta and M. Govindaraju, "Framework for Efficient Indexing          
and Searching of Scientific Metadata," 2010 10th IEEE/ACM International         
Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC, 2010, pp.           
553-556. DOI: 10.1109/CCGRID.2010.120. URL:    
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5493435&isnu
mber=5493340 
 
[Gupta2014] Preeti Gupta, Avani Wildani, Daniel Rosenthal, Ethan L. 
Miller, Ian Adams, Christina Strong, and Andy Hospodor. An Economic          
Perspective of Disk vs. Flash Media in Archival Storage. In the Proceedings of             
the 22th IEEE International Symposium on Modeling, Analysis, and Simulation          
of Computer and Telecommunication Systems (MASCOTS 2014), 2014. 
 
[Gupta2018] M. Gupta et al., "Reliability-Aware Data Placement for         
Heterogeneous Memory Architecture," 2018 IEEE International Symposium on        
High Performance Computer Architecture (HPCA), Vienna, 2018, pp. 583-595. 
 
[HDF2018] The HDF Group. Hierarchical Data Format, version 5, 1997-2015.          
http://www.hdfgroup.org/HDF5/ accessed on August, 1 2018. 

[HDR2018] Mellanox Technologies. Introducing 200G HDR InfiniBand       
Solutions. 
http://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_
HDR_InfiniBand_Solutions.pdf, 2018. 
 
[HL-LHC n.d.] The High-Luminosity LHC Project.      
https://home.cern/topics/high-luminosity-lhc 
 
[Habib2015] Habib, S., et al. ASCR/HEP Exascale Requirements Review Report.          
Advanced Scientific Computing Research and High Energy Physics, DOE Office          
of Science, Bethesda, Maryland, June 10-12, 2015. 
 
[Hack2017] Hack, J., et al. Crosscut Report: Exascale Requirements Reviews.          
Office of Advanced Scientific Computing Research, DOE Office of Science,          
Tysons Corner , Virginia, March 9-10, 2017. 
 
[Hammond2011] J. Hammond. “Rationalizing message logging for Lustre.” Lustre         
Users Group, 2011. 
 
[Hargrove2006] Hargrove, Paul H., and Jason C. Duell. "Berkeley Lab          
Checkpoint/Restart (BLCR) for Linux clusters." Journal of Physics: Conference         
Series. 46. 1. IOP Publishing, 2006. 

89 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5493435&isnumber=5493340
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5493435&isnumber=5493340
http://www.hdfgroup.org/HDF5/
http://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
https://home.cern/topics/high-luminosity-lhc


 
[HEC-FSIO2011] High End Computing Interagency Working Group (HECIWG)        
Sponsored File Systems and I/O Workshop HEC FSIO 2011. 
 
[Henderson2004] Henderson, Amy, Jim Ahrens, and Charles Law. The         
ParaView guide. Clifton Park, NY: Kitware, 2004. 
 
[Herbein2016] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W.          
Scogland, Marc Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer,         
and Michela Taufer. 2016. Scalable I/O-Aware Job Scheduling for Burst Buffer           
Enabled HPC Clusters. In Proceedings of the 25th ACM International          
Symposium on High-Performance Parallel and Distributed Computing (HPDC        
'16). ACM, New York, NY, USA, 69-80. 
 
[Hills2015] Hills, D. J., R. R. Downs, R. Duerr, J. C. Goldstein, M. A. Parsons, and                
H. K. Ramapriyan (2015), The importance of data set provenance for science,            
Eos, 96, DOI:10.1029/2015EO040557. Published on 4 December 2015. URL:         
https://eos.org/opinions/the-importance-of-data-set-provenance-for-science, 
accessed on August 31, 2018. 
 
[HIO n.d.] https://github.com/hpc/libhio 
 
[Hoefler2009] Hoefler, Torsten, Andrew Lumsdaine, and Jack Dongarra. "Towards         
efficient MapReduce using MPI." In Recent Advances in Parallel Virtual Machine and            
Message Passing Interface, pp. 240-249. Springer Berlin Heidelberg, 2009. 
 
[Hyperion n.d.] https://hyperionproject.llnl.gov/index.php 
 
[IBM CAST n.d.] https://github.com/IBM/CAST 
 
[Indiana2014] University of Indiana. Komadu Provenance Collection       
Framework User Guide, April 2014. 
 
[Inman2014] J. Inman, G. Grider and H. B. Chen, "Cost of Tape versus Disk for               
Archival Storage," 2014 IEEE 7th International Conference on Cloud         
Computing, Anchorage, AK, 2014, pp. 208-215. 
 
[Inman2017] Jeff Inman, Will Vining, Garrett Ransom, and Gary Grider,          
“MarFS, a Near-POSIX Interface to Cloud Objects”, ;login: The USENIX          
Magazine, Spring 2017, 42(1). 
 
[IODoctors2018] http://iodoctors.com/ 
 

90 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://eos.org/opinions/the-importance-of-data-set-provenance-for-science
https://hyperionproject.llnl.gov/index.php
https://github.com/IBM/CAST
http://iodoctors.com/


[Ionkov2013] L. Ionkov, M. Lang, and C. Maltzahn. “Drepl: Optimizing access to            
application data for analysis and visualization.” In MSST ’13, Long Beach, CA, May             
6-10, 2013. 
 
[IOR n.d.]  
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/t
rinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/ 
 
[Isaila2011] Isaila, Florin, et al. "Design and evaluation of multiple-level data           
staging for blue gene systems." IEEE Transactions on Parallel and Distributed           
Systems, 22.6 (2011): 946-959. 
 
[Jenkins2012] Jenkins, John, Isha Arkatkar, Sriram Lakshminarasimhan, Neil Shah,         
Eric R. Schendel, Stephane Ethier, Choong-Seock Chang, et al. "Analytics-driven          
lossless data compression for rapid in-situ indexing, storing, and querying." In           
Database and Expert Systems Applications, pp. 16-30. Springer Berlin Heidelberg,          
2012. 
 
[Jenkins2017] Jenkins, J., G. Shipman, J. Mohd-Yusof, K. Barros, P. Carns, and R.             
Ross. A case study in computational caching microservices for HPC. In           
Proceedings of the IEEE International Workshop on Emerging Parallel and          
Distributed Runtime Systems and Middleware (IPDRM). IEEE, June 2017. 
 
[Jian2016] X. Jian, V. Sridharan and R. Kumar, "Parity Helix: Efficient           
protection for single-dimensional faults in multi-dimensional memory       
systems," 2016 IEEE International Symposium on High Performance Computer         
Architecture (HPCA), Barcelona, 2016, pp. 555-567. 
 
[Jin2015] Jin,Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky, H. Kolla, J.               
Chen, R. Hager, C-S Chang and M. Parashar, “Exploring data staging across deep             
memory hierarchies for coupled data intensive simulation workflows." In         
Proceedings of the 29th IEEE International Parallel & Distributed Processing          
Symposium, Hyderabad, India, May 2015. 
 
[Jin2013] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klasky, N. Podhorszki,                 
and H. Abbasi, “Using cross-layer adaptations for dynamic data management in large            
scale coupled scientific workflows.” In Proceedings of SC’13, The ACM/IEEE          
International Conference for High Performance Computing, Networking Storage and         
Analysis, Denver, CO, USA, November 2013.  
  
[Jin2017] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate 
Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-Value Stores 
with Fast In-Network Caching. In the 26th ACM Symposium on Operating           
Systems Principles (SOSP 2017), 2017. 
 

91 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/


[Johnson2014] Charles Johnson, Kimberly Keeton, Charles B. Morrey III, Craig          
A. N. Soules, Alistair Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta,           
Hamilton Coutinho, Patrick J. Doyle, Rafael Eichelberger, Hugo Kiehl,         
Guilherme Magalhaes, James McEvoy, Padmanabhan Nagarajan, Patrick       
Osborne, Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien Tandel,         
Lincoln Thomas, and Sebastian Zangaro. “From research to practice:         
Experiences engineering a production metadata database for a scale out file           
system.” In Proceedings of the 12th USENIX Conference on File and Storage            
Technologies (FAST 2014), USENIX, 2014. 
 
[Jones2017] Terry Jones, Michael J. Brim, Geoffroy Vallee, Benjamin Mayer,          
Aaron Welch, Tonglin Li, Michael Lang, Latchesar Ionkov, Douglas Otstott, Ada           
Gavrilovska, Greg Eisenhauer, Thaleia Doudali, and Pradeep Fernando. 2017.         
UNITY: Unified Memory and File Space. In Proceedings of the 7th International            
Workshop on Runtime and Operating Systems for Supercomputers ROSS 2017          
(ROSS '17). ACM, New York, NY, USA, Article 6, 8 pages. 
 
[Kadekodi2015] S. Kadekodi, S. Pimpale, and G. A. Gibson. Caveat-Scriptor:          
Write Anywhere Shingled Disks. In 7th USENIX Workshop on Hot Topics in            
Storage and File Systems (HotStorage 15) , 2015.  
 
[Kannan2011a] Kannan, Sudarsun, et al. "Using active NVRAM for I/O 
staging.” In Proceedings of the 2nd international workshop on Petascale data 
analytics: challenges and opportunities (PDAC@SC), 2011. 
 
[Kannan2011b] Kannan, Sudarsun, et al. "Using active NVRAM for cloud I/O.” 
In Proceedings of the 2011 Sixth Open Cirrus Summit. 2011. 
 
[Kannan2013] Kannan, Sudarsun, et al. "Optimizing Checkpoints Using NVM as 
Virtual Memory.” In Proceedings of the 2013 IEEE 27th International          
Symposium on Parallel and Distributed Processing, 2013. 
 
[Karpathiotakis2015] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A.           
Ailamaki. “Just-in-time data virtualization: Lightweight data management with VIDa.         
“In CIDR ’15, Asilomar, CA, January 4-7 2015. 
 
[Kettimuthu12] Kettimuthu, R., Vardoyan, G., Agrawal, G., and Sadayappan, P.,          
“Modeling and optimizing large-scale wide-area data transfers.” In 14th         
IEEE/ACM Symposium on Cluster, Cloud, and Grid Computing (CCGrid2014).         
IEEE, 2014. 
 
[Kim2003] Mike Kim, John Hufferd, Mallikarjun Chadalapaka, Uri Elzur, Hemal          
Shah, and Patricia Thaler. iSCSI Extensions for RDMA Specification (Version          
1.0), 2003. 
 

92 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



[Kim2008] Kim, John, et al. "Technology-driven, highly-scalable dragonfly        
topology." ACM SIGARCH Computer Architecture News 36.3. IEEE Computer         
Society, 2008. 
 
[Kim2015] Youngjae Kim, Youngjae and Gunasekaran, Raghul. “Understanding        
I/O workload characteristics of a peta-scale storage system.” The Journal of           
Supercomputing, Volume 71 Issue 3, pages 761-780, 2015. 
 
[Kimpe2007] Kimpe, Dries, Rob Ross, Stefan Vandewalle, and Stefaan Poedts.          
"Transparent log-based data storage in MPI-IO applications." In Recent Advances in           
Parallel Virtual Machine and Message Passing Interface, pp. 233-241. Springer          
Berlin Heidelberg, 2007. 
 
[Kimpe2012] D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and R. Ross.               
“AESOP: Expressing concurrency in high-performance system software.” In        
Proceedings of the 7th International Conference on Networking, Architecture and          
Storage (NAS), pp.303–312, Fujian, China, June 2012. 
 
[Klasky2011] Klasky, Scott, Hasan Abbasi, Jeremy Logan, Manish Parashar, Karsten          
Schwan, Arie Shoshani, Matthew Wolf et al. "In situ data processing for            
extreme-scale computing." Scientific Discovery through Advanced Computing       
Program (SciDAC’11) (2011). 
 
[Knüpfer2011] Knüpfer, Andreas, et al. "Score-P: A joint performance         
measurement run-time infrastructure for Periscope, Scalasca, TAU, and        
Vampir." Tools for High Performance Computing 2011. Springer, Berlin,         
Heidelberg, 2012. 79-91. 
 
[Koziol2014] Koziol, Quincey, ed. High performance parallel I/O. CRC Press, 2014. 
 
[Kryza2015] Kryza, B. and Kitowski J. “File-Less Approach to Large Scale 
Data Management”. European Conference on Parallel Processing 
, August 2015. DOI: 10.1007/978-3-319-27308-2_3. URL:      
https://www.researchgate.net/publication/300123924_File-Less_Approach_t
o_Large_Scale_Data_Management,  accessed on August 31, 2018. 
 
[Ku2006] S. Ku, C. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes, S. Klasky,               
W. Lee, Z. Lin, S. Parker, et al. “Gyrokinetic particle simulation of neoclassical             
transport in the pedestal/scrape-off region of a tokamak plasma.” Journal of           
Physics: Conference Series 46 (2006): 87. 
 
[Kung 1981] Kung, Hsiang-Tsung, and John T. Robinson. "On optimistic methods for            
concurrency control." ACM Transactions on Database Systems (TODS) 6.2 (1981):          
213-226. 
 

93 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.researchgate.net/publication/300123924_File-Less_Approach_to_Large_Scale_Data_Management
https://www.researchgate.net/publication/300123924_File-Less_Approach_to_Large_Scale_Data_Management


[Kunkel2013] Kunkel, J.M. “Simulating parallel programs on application and         
system level”. Comput Sci Res Dev (2013) 28: 167.         
https://doi.org/10.1007/s00450-012-0208-2 
 
[Kunkel2017] Kunkel, Julian, Lofstead, Gerald Fredrick, and Bent, John. The          
Virtual Institute for I/O and the IO-500.. United States: N. p., 2017. Web.  
 
[Kunkel2018] Kunkel, Julian and George Markomanolis, Understanding       
Metadata Latency with MDWorkbench. Proceedings of the Workshop On         
Performance and Scalability of Storage Systems (WOPSSS), 2018. 
 
[Kurtzer2017] Gregory Kurtzer. Containers in HPC: Singularity. In the 2017          
Intel HPC Developer’s Conference, 2017. 
 
[LHC n.d.] The Large Hadron Collider Project.       
http://home.cern/topics/large-hadron-collider 
 
[LSST2009] LSST Science Collaborations and LSST Project 2009, LSST Science          
Book, Version 2.0, arXiv:0912.0201. 
 
[LaFon2012] Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. On         
distributed file tree walk of parallel file systems. In the Proceedings of the             
International Conference on High Performance Computing, Networking,       
Storage and Analysis (SC ‘12), 2012. 
 
[Lakshminarasimhan2011] Lakshminarasimhan, Sriram, Neil Shah, Stephane Ethier,       
Scott Klasky, Rob Latham, Rob Ross, and Nagiza F. Samatova. "Compressing the            
incompressible with ISABELA: In-situ reduction of spatio-temporal data." In         
Euro-Par 2011 Parallel Processing, pp. 366-379. Springer Berlin Heidelberg, 2011. 
 
[Lamport2001] Lamport, Leslie. "Paxos made simple." ACM Sigact News 32.4          
(2001): 18-25. 
  
[LANL Data n.d.] LANL systems – operational and fault data          
http://institute.lanl.gov/data/ 
 
[LeFevre2014] Jeff LeFevre, Jagan Sankaranarayanan, Hakan Hacıg¨um¨us, Junichi        
Tatemura, Neoklis Polyzotis, and Michael J. Carey. “Miso: Souping up big data query             
processing with a multistore system.” In SIGMOD ’14, Snowbird, UT, June 22-27            
2014. 
 
[Leung2007] Leung, Andrew W., Ethan L. Miller, and Stephanie Jones. "Scalable           
security for petascale parallel file systems." In Proceedings of the 2007           
ACM/IEEE conference on Supercomputing, p. 16. ACM, 2007. 
 

94 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://doi.org/10.1007/s00450-012-0208-2
http://home.cern/topics/large-hadron-collider
http://institute.lanl.gov/data/


[Leung2009] Andrew W. Leung, Ian F. Adams, and Ethan L. Miller. Megellan: A          
searchable metadata architecture for large-scale file systems. Technical        
Report UCSC-SSRC-09-07, University of California, Santa Cruz, November 2009. 
 
[Li2003] Li, Jianwei, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur,           
William Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale.           
"Parallel netCDF: A high-performance scientific I/O interface." In Supercomputing,         
2003 ACM/IEEE Conference, pp. 39-39. IEEE, 2003. 
 
[Li2013] Li, Yan, Nakul Sanjay Dhotre, Yasuhiro Ohara, Thomas M. Kroeger,           
Ethan L. Miller, and Darrell Long. "Horus: Fine-grained encryption-based         
security for large-scale storage." In FAST, pp. 147-160. 2013. 
 
[Li2017] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang          
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:         
High-Performance In-Memory Key-Value Store with Programmable NIC. In the         
26th ACM Symposium on Operating Systems Principles (SOSP 2017), 2017. 
 
[Liao2007] Liao, Wei-keng, et al. "An implementation and evaluation of          
client-side file caching for MPI-IO." Parallel and Distributed Processing         
Symposium, 2007. IPDPS 2007. IEEE, 2007. 
 
[Liewer1989] Liewer, Paulett C., and Viktor K. Decyk. "A general concurrent           
algorithm for plasma particle-in-cell simulation codes." Journal of Computational         
Physics 85, no. 2 (1989): 302-322. 
 
[Ligon2006] Ligon, Walter B. “Improving scalability in parallel file systems for high end             
computing.” High End Computing University Research Activity NSF 06-503 (2006) 
 
[Lindstrom2006] Lindstrom, Peter, and Martin Isenburg. "Fast and efficient         
compression of floating-point data." IEEE Transactions on Visualization and         
Computer Graphics 12. 5 (2006): 1245-1250.  
 
[Lister2003] Lister, J. B., B. P. Duval, J. W. Farthing, T. J. Fredian, M. Greenwald,               
J. How, X. Llobet, F. Saint-Laurent, W. Spears, and J. A. Stillerman. "The ITER              
project and its data handling requirements." In 9th ICALEPCS Conference,          
Gyeongju, Korea. 2003. 
 
[Liu2004] Liu, Jiuxing, Dhabaleswar K. Panda, and Mohammad Banikazemi.         
"Evaluating the impact of RDMA on Storage I/O over Infiniband." SAN-03 Workshop            
(in conjunction with HPCA). 2004. 
 
[Liu2012a] Liu, Ning, et al. "On the role of burst buffers in leadership-class             
storage systems." IEEE 28th Symposium on Mass Storage Systems and          
Technologies (MSST), 2012. IEEE, 2012. 

95 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



 
[Liu2012b] Liu, Zhuo, et al. "PCM-based durable write cache for fast disk I/O."             
2012 IEEE 20th International Symposium on Modeling, Analysis & Simulation          
of Computer and Telecommunication Systems (MASCOTS), IEEE, 2012. 
 
[Liu2015] Liu, Ning, X. Yang, X. H. Sun, J. Jenkins and R. Ross, "YARNsim: Simulating               
Hadoop YARN," 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and           
Grid Computing, Shenzhen, 2015, pp. 637-646. 
 
[Liu2017] Z. Liu, P. Balaprakash, R. Kettimuthu, and I. Foster. Explaining Wide 
Area Data Transfer Performance. in IEEE International Symposium on 
High-performance Parallel and Distributed Computing, Washington, DC, June 
2017. 
 
[Lockwood2017] Lockwood, Glenn K., Wucherl Yoo, Suren Byna, Nicholas J.          
Wright, Shane Snyder, Kevin Harms, Zachary Nault, and Philip Carns, “UMAMI:           
a recipe for generating meaningful metrics through holistic I/O performance          
analysis”, In Proceedings of the 2nd Joint International Workshop on Parallel           
Data Storage & Data Intensive Scalable Computing Systems 2017 (PDSW-DISCS          
’17). ACM, New York, NY, USA, 55-60.  
 
[Lockwood2017b] Lockwood, G.K. , D. Hazen, Q. Koziol, S. Canon, K. Antypas, J.             
Balewski, N. Bathaser, W. Bhimji, J. Botts, J. Broughton, T. L. Butler, G. F. Butler,               
R. Cheema, C. S. Daley, T. Declerck, L. Gerhardt, W. E. Hurlbert, K. A.              
Kallback-Rose, S. Leak, J. Lee, R. Lee, J. Liu, K. Lozinskiy, D. Paul, Prabhat, C.               
Snavely, J. Srinivasan, T. Stone Gibbins, and N. J. Wright, “Storage 2020: A             
Vision for the Future of HPC Storage,” LBNL-2001072, Berkeley, CA, 2017. 
 
[Lockwood2018] Lockwood, Glenn K., Shane Snyder, George Brown, Kevin         
Harms, Philip Carns, Nicholas J. Wright. "TOKIO on ClusterStor: Connecting          
Standard Tools to Enable Holistic I/O Performance Analysis." In Proceedings of           
the 2018 Cray User Group. Stockholm, SE. May 2018. 
 
[Lofstead2008] Lofstead, Jay F., et al. "Flexible IO and integration for scientific            
codes through the adaptable IO system (ADIOS)." In Proceedings of the 6th            
international workshop on Challenges of Large Applications in Distributed         
Environments. ACM, 2008. 
 
[Lofstead2014] G. F. “Lofstead, Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.                
Choi, S. Klasky, R. Tchoua, R. A. Oldfield, M. Parashar, N. Samatova, K. Schwan, A.               
Shoshani, M. Wolf, K. Wu, W. Yu, “Hello ADIOS: The challenges and lessons of              
developing leadership class I/O frameworks.” Concurrency and Computation:        
Practice and Experience 26.7 (2014): 1453-1473.  
 

96 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



[Lofstead2016] Lofstead, Jay, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol,         
John Bent, and Eric Barton. 2016. DAOS and friends: a proposal for an exascale              
storage system. In Proceedings of the International Conference for High          
Performance Computing, Networking, Storage and Analysis (SC '16). IEEE Press,          
Piscataway, NJ, USA, Article 50, 12 pages.  
 
[Logan2012] Logan J. et al. (2012) Understanding I/O Performance Using I/O           
Skeletal Applications. In: Kaklamanis C., Papatheodorou T., Spirakis P.G. (eds)          
Euro-Par 2012 Parallel Processing. Euro-Par 2012. Lecture Notes in Computer          
Science, vol 7484. Springer, Berlin, Heidelberg 
 
[Lu2016] Wei Lu. Crossbar RRAM: A New Era of Storage Innovation for a             
Content Rich World. Flash Memory Summit, 2016. 
 
[Ludwig2007] Ludwig, Thomas, Stephan Krempel, Michael Kuhn, Julian Kunkel, and          
Christian Lohse. "Analysis of the MPI-IO optimization levels with the PIOViz           
Jumpshot enhancement." In Recent Advances in Parallel Virtual Machine and          
Message Passing Interface, pp. 213-222. Springer Berlin Heidelberg, 2007. 
 
[Luettgau2017] Luettgau J., Kunkel J. (2017) Simulation of Hierarchical         
Storage Systems for TCO and QoS. In: Kunkel J., Yokota R., Taufer M., Shalf J.               
(eds) High Performance Computing. ISC High Performance 2017. Lecture         
Notes in Computer Science, vol 10524. 
 
[Luo2017] Luo, Xiaoqing et al., "ScalaIOExtrap: Elastic I/O Tracing and          
Extrapolation," 2017 IEEE International Parallel and Distributed Processing        
Symposium (IPDPS), Orlando, FL, 2017, pp. 585-594. 
 
[Lustre2010] Lustre-HSM,  
(http://wiki.lustre.org/images/4/4d/Lustre_hsm_seminar_lug10.pdf) 

[Luu2013] Luu, H, B. Behzad, R. Aydt, and M. Winslett. “A multi-level approach for              
understanding I/O activity in HPC applications.” in IEEE International Conference on           
Cluster Computing (CLUSTER), Sept. 2013, pp. 1–5. 

[Luu2015] Luu, H, M. Winslett, W. Gropp, K. Harms, P. Carns, R. Ross, Y. Yao, S. Byna,                 
and Prabhat. “A Multi-platform Study of I/O Behavior on Petascale          
Supercomputers.” In the 24th International ACM Symposium on High Performance          
Distributed Computing. June 2015 (to appear). 
 
[Ma2003] Ma, Xiaonan, and AL Narasimha Reddy. "MVSS: An active storage           
architecture." IEEE Transactions on Parallel and Distributed System, 14.10         
(2003): 993-1005. 
 

97 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://wiki.lustre.org/images/4/4d/Lustre_hsm_seminar_lug10.pdf


[Ma2009a] Ma, Kwan-Liu, Peter H. Beckman, and Kamil A. Iskra. “Visual           
characterization of I/O system behavior for high-end computing.” High End Computing           
University Research Activity NSF 09-530 (2009) 
 
[Ma2009b] Ma, Xiaosong, Frank Mueller, Kai Shen and Marianne Winslett. “Automatic           
extraction of parallel I/O benchmarks from HEC applications.” High End Computing           
University Research Activity NSF 09-530 (2009) 
 
[MacArthur2017] Patrick MacArthur, Qian Liu, Robert D. Russell, Fabrice         
Mizero, Malathi Veeraraghavan, and John M. Dennis. An Integrated Tutorial on           
Verbs, Infiniband, and MPI. In the IEEE Communications Surveys & Tutorials,           
Vol. 19, No. 4, 2017. 
 
[Madireddy2018] Madireddy S. et al. (2018) Machine Learning Based Parallel          
I/O Predictive Modeling: A Case Study on Lustre File Systems. In: Yokota R.,             
Weiland M., Keyes D., Trinitis C. (eds) High Performance Computing. ISC High            
Performance 2018. Lecture Notes in Computer Science, vol 10876.  
 
[Magoutis2003] Magoutis, Kostas, et al. "Making the most out of direct-access           
network attached storage." FAST. 2003. 
 
[Mandal2007] Nandita Mandal, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, and          
Karan Vahi. Integrating existing scientific workflow systems: The        
Kepler/Pegasus example. In Proceedings of the 2nd Workshop on Workflows          
in Support of Large-scale Science, WORKS '07, pp. 21-28. ACM Press, 2007. 
 
[Manzanares2016] A. Manzanares, N. Watkins, C. Guyot, D. LeMoal, C.          
Maltzahn, and Z. Bandic. ZEA, A Data Management Approach for SMR. In 8th             
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 16),            
2016. 
 
[May2001] May, John M. Parallel I/O for high performance computing. Morgan          
Kaufmann, 2001. 
 
[MDTest n.d.]  
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procure
ment/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/mdtest/ 
  
[Mesnier2003] Mike Mesnier, Gregory R Ganger, Erik Riedel. Object-based         
Storage. In IEEE Communications Magazine, Vol 41, 8, pp 84-90, 2003. 
 
[Mesnier2007] Mesnier M.P., M. Wachs, R. R. Sambasivan, J. Lopez, J.           
Hendricks, G. R. Ganger, and D. O’Hallaron. “Trace: Parallel trace replay with            
approximate causal events.” In Proceedings of the 5th USENIX Conference on           

98 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/mdtest/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/mdtest/


File and Storage Technologies, ser. FAST ’07. Berkeley, CA, USENIX Association,           
2007, pp. 24–24. 
 
[Mikdadi2017] Mikdadi, D., “The Power of Provenance”, DataScience@NIH,        
Published on 6 July 2017. URL:      
https://datascience.nih.gov/PowerofProvenance, accessed on August 31,     
2018. 
 
[Milenkovic2018] O. Milenkovic, R. Gabrys, H. M. Kiah and S. M. H. Tabatabaei             
Yazdi, "Exabytes in a Test Tube," in IEEE Spectrum, vol. 55, no. 5, pp. 40-45,               
May 2018. 
 
[Miller2010] Ross Miller, Jason Hill, G. Raghul, G.M. Shipman, D. Maxwell.           
“Monitoring tools for large scale systems.” CUG10, 2010. 
 
[Miller2001] Miller, Ethan, Brandt, Scott A., Long, Darrell, “HerMES:         
High-performance reliable MRAM-enabled storage.” In Proceedings of the 8th         
IEEE Workshop on Hot Topics in Operating Systems, May 2001. 

[Miller2015] Miller, M. C. Design & Implementation of MACSio. No.          
LLNL-TR-670388. Lawrence Livermore National Lab.(LLNL), Livermore, CA       
(United States), 2015. 

[Moody2010] Moody, Adam, Greg Bronevetsky, Kathryn Mohror, and Bronis R.          
De Supinski. "Design, modeling, and evaluation of a scalable multi-level          
checkpointing system." In International Conference for High Performance        
Computing, Networking, Storage and Analysis (SC), 2010, pp. 1-11. IEEE, 2010. 
 
[Moore2011] M. Moore, D. Bonnie, B. Ligon, M. Marshall, W. Ligon, N. Mills, 
E. Quarles, S. Sampson, S. Yang, and B. Wilson. OrangeFS: Advancing 
PVFS. FAST Poster Session, 2011. 
 
[Mubarak2017] “Quantifying I/O and Communication Traffic Interference on        
Dragonfly Networks equipped with Burst Buffers”, M. Mubarak, P. Carns, J.           
Jenkins et al. in 19th IEEE Cluster Conference, September 2017.  
 
[Mubarak2017TPDS] “Enabling parallel simulation in large-scale HPC       
Network System co-design”, Misbah Mubarak, Christopher D. Carothers,        
Robert B. Ross and Philip Carns in IEEE Transactions on Parallel and            
Distributed Systems (IEEE TPDS), 2017.  
 
[Muelder2011] Muelder, Chris, et. al. “Visual analysis of I/O system behavior           
for high-end computing.” In Proceedings of 3rd Workshop on Large-Scale          
System and Application Performance (LSAP), pp. 19–26, 2011. 
 

99 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://datascience.nih.gov/PowerofProvenance


[Muniswamy-Reddy2006] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,        
and M. Seltzer. Provenance-aware storage systems. In Proceedings of the          
Annual Conference on USENIX ’06 Annual Technical Conference, 2006. 
 
[Mysore2014] Mysore, Radhika Niranjan, et. al., “Gestalt: Fast, unified 
fault localization for networked systems.” In 2014 USENIX Annual Technical          
Conference (USENIX ATC 14), pp. 255–267, 2014. 
 
 
[NERSC Data n.d.] NERSC systems – operational and fault data          
http://pdsi.nersc.gov/ 
 
[NERSC2015] MyNERSC gives users easier access to data, jobs, wait times.           
2018.  
http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/20
15/mynersc-gives-users-easier-access-to-data-projects-wait-times/ 
 
[NVME2018a] Non-Volatile Memory Express   
Base Specification.  
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-
Ratified.pdf accessed on August 1, 2018. 
 
[NVME2018b] Non-volatile Memory Express over Fabrics Revision 1.0a.        
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1_0a-2018.
07.23-Ratified.pdf, 2018. 
 
[Nagle2004] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale           
storage cluster-delivering scalable high bandwidth storage. In the proceedings         
of the 2004 ACM/IEEE Conference on Supercomputing (SC '04).  
 
[Najm2009] Najm, Habib N. "Uncertainty quantification and polynomial chaos         
techniques in computational fluid dynamics." Annual Review of Fluid Mechanics 41           
(2009): 35-52. 
 
[Ni2012] Ni, Xiang, Esteban Meneses, and Laxmikant V. Kalé. "Hiding          
checkpoint overhead in HPC applications with a semi-blocking algorithm."         
IEEE International Conference on Cluster Computing (CLUSTER), 2012. IEEE,         
2012. 
 
[Nisar2008] Nisar, Arifa, Wei-keng Liao, and Alok Choudhary. "Scaling parallel I/O           
performance through I/O delegate and caching system." In International Conference          
for High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.           
pp. 1-12. IEEE, 2008. 
 

100 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://pdsi.nersc.gov/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1_0a-2018.07.23-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1_0a-2018.07.23-Ratified.pdf


[Nugent 2015] P. Nugent, Y. Cao, and M. Kasliwal, “The Palomar transient            
factory,” 2015, vol. 939702, no. February 2015, p. 939702. 
 
[Nunez2003] http://institute.lanl.gov/data/software/ 
 
[Núñez2010] Núñez, Alberto, Javier Fernández, Jose Garcia, Félix Garcia, and          
Jesús Carretero. New Techniques for Simulating High Performance MPI         
Applications on Large Storage Networks. The Journal of Supercomputing,         
51:40–57, 2010. 
 
[ONF2018a] Open Networking Foundation. OpenFlow Protocol Specifications. 
https://www.opennetworking.org/technical-communities/areas/specificatio
n/open-datapath/ accessed on August 1, 2018. 
 
[ONF2018b] Open Networking Foundation. Open Networking Operating 
System. https://www.opennetworking.org/onos/ accessed on August 1, 2018. 
 
[OPA2018] Intel, Inc. Intel Omni-Path Fabirc - the Next HPC Fabric.           
https://www.intel.com/content/www/us/en/high-performance-computing-f
abrics/omni-path-fabric-demo.html?_ga=2.112446476.906196838.15341791
42-948016287.1534179142 accessed on August 1, 2018. 
 
[Oldfield2007] Ron A. Oldfield, Lee Ward, Arther B. Maccabe, and Patrick           
Widener. Scalable security for MPP storage systems. In International         
Conference on Security and Management: Special Session on Security in          
Supercomputing Clusters, Las Vegas, NV, July 2007. 
 
[Ongaro2014] Diego Ongaro and John Ousterhout. In Search of an          
Understandable Consensus Algorithm. In the 2014 USENIX Annual Technical         
Conference, 2014. 
 
[Optane2018] Intel Optane® Technology.    
https://www.intel.com/content/www/us/en/architecture-and-technology/in
tel-optane-technology.html accessed August 1, 2018. 
 
[Organick2018] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph 
Lopez, Sergey Yekhanin, Konstantin Makarychev, Miklos Racz, Govinda 
Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher Takahashi, Sharon 
Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart, Gagan Gupta, 
Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze, and 
Karin Strauss. Random Access in Large-scale DNA Data Storage. In the journal 
Nature Biotechnology, vol. 36, 2018.  
 

101 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://institute.lanl.gov/data/software/
https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/
https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/
https://www.opennetworking.org/onos/
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-fabric-demo.html?_ga=2.112446476.906196838.1534179142-948016287.1534179142
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-fabric-demo.html?_ga=2.112446476.906196838.1534179142-948016287.1534179142
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-fabric-demo.html?_ga=2.112446476.906196838.1534179142-948016287.1534179142
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html


[Orphus2018] Orphus, C., “Berkeley Lab Researchers Use Machine Learning to          
Search Science Data”, URL:    
https://newscenter.lbl.gov/2018/06/19/berkeley-lab-researchers-use-machi
ne-learning-to-search-science-data/,  accessed on August 31, 2018. 
 
[PFTool2018] PFTool: Parallel File Tool. https://github.com/pftool/pftool 
accessed on August 1, 2018. 
 
[PMDK2018] Persistent Memory Development Kit. https://pmem.io/pmdk/      
accessed on August 1, 2018. 
 
[Palmer2011] Palmer, Bruce, Annette Koontz, Karen Schuchardt, Ross Heikes, and          
David Randall. "Efficient data IO for a parallel global cloud resolving model."            
Environmental Modelling & Software 26.12 (2011): 1725-1735. 
 
[Palmer2015] Palmer, J. T. et al., "Open XDMoD: A Tool for the Comprehensive             
Management of High-Performance Computing Resources," in Computing in        
Science & Engineering, vol. 17, no. 4, pp. 52-62, July-Aug. 2015. 
 
[Parallel I/O Tutorial n.d.] Parallel I/O in practice        
http://sc14.supercomputing.org/program/tutorials 
 
[Parker-Wood2010] Parker-Wood, Aleatha, Christina Strong, Ethan L. Miller,        
and Darrell DE Long. "Security aware partitioning for efficient file system           
search." In IEEE 26th Symposium on Mass Storage Systems and Technologies           
(MSST), 2010, pp. 1-14. IEEE, 2010. 
 
[Parker-Wood2013] Aleatha Parker-Wood, Darrell D. E. Long, Brian A.         
Madden, Ian F. Adams, Michael McThrow, and Avani Wildani. 2013. Examining           
extended and scientific metadata for scalable index designs. In Proceedings of           
the 6th International Systems and Storage Conference (SYSTOR '13). ACM, New           
York, NY, USA, , Article 4 , 6 pages. DOI:          
https://doi.org/10.1145/2485732.2485754. URL:  
https://www.ssrc.ucsc.edu/Papers/parkerwood-systor13.pdf  
 
[Parkinson 2016] D. Y. Parkinson, K. Beattie, X. Chen, J. Correa, E. Dart, B. J.               
Daurer, J. R. Deslippe, A. Hexemer, H. Krishnan, A. A. Macdowell, F. R. N. C.               
Maia, S. Marchesini, H. A. Padmore, S. J. Patton, T. Perciano, J. A. Sethian, D.               
Shapiro, R. Stromsness, N. Tamura, B. L. Tierney, C. E. Tull, and D. Ushizima,              
“Real-time data-intensive computing,” AIP Conf. Proc., vol. 1741, pp. 1–6, 2016. 
  
[Patil2011] Swapnil Patil and Garth A. Gibson. “Scale and concurrency of           
GIGA+: File system directories with millions of files.” In Proceedings of the            
USENIX Conference on File and Storage Technologies (FAST), pp. 177-190.          
USENIX, 2011. 

102 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://newscenter.lbl.gov/2018/06/19/berkeley-lab-researchers-use-machine-learning-to-search-science-data/
https://newscenter.lbl.gov/2018/06/19/berkeley-lab-researchers-use-machine-learning-to-search-science-data/
https://github.com/pftool/pftool
https://pmem.io/pmdk/
http://sc14.supercomputing.org/program/tutorials
https://doi.org/10.1145/2485732.2485754
https://www.ssrc.ucsc.edu/Papers/parkerwood-systor13.pdf


 
[Patterson1989] Patterson, David A., et al. "Introduction to redundant arrays          
of inexpensive disks (RAID)." In Proceedings of the IEEE COMPCON, Vol. 89.            
1989. 
 
[PDSI FSStats Data n.d.] http://www.pdsi-scidac.org/fsstats 
 
[PDSW n.d.] Parallel Data Storage Workshop http://www.pdsw.org 
 
[Piernas2007] Piernas, Juan, Jarek Nieplocha, and Evan J. Felix. "Evaluation of           
active storage strategies for the Lustre parallel file system." In Proceedings of            
the 2007 ACM/IEEE conference on Supercomputing. ACM, 2007. 
 
[Pillai2014] Pillai, T.S., Chidabram, V., Alagappan, R., Al-Kiswany, S., Arpaci-Dussea,          
A.c., and Arpaci-Dusseau, R.H, “All file systems are not created equal: On the             
complexity of crafting crash-consistent applications.” In The 11th Usenix         
Symposium on Operating System Design and Implementation (OSDI ’14). Usenix          
Association, 2014. 
 
[Plimpton2011] Plimpton, Steven J., and Karen D. Devine. "MapReduce in MPI for            
large-scale graph algorithms." Parallel Computing 37.9 (2011): 610-632. 
 
[Poremba2015] Poremba, M., T. Zhang and Y. Xie, "NVMain 2.0: A           
User-Friendly Memory Simulator to Model (Non-)Volatile Memory Systems,"        
in IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 140-143, July-Dec. 1             
2015. 
 
[PRObE n.d.] Parallel Reconfigurable Observational Environment      
http://www.nmc-probe.org/ 
 
[Priedhorsky2017] Reid Priedhorsky and Tim Randles. Charliecloud:       
unprivileged containers for user-defined software stacks in HPC. In the          
Proceedings of the International Conference for High Performance Computing,         
Networking, Storage and Analysis (SC ‘17), 2017. 
 
[Prometheus2018] Prometheus. https://prometheus.io/ 
 
[Qin2006] Qin, Lingjun, and Dan Feng. "Active storage framework for          
object-based storage device." 20th International Conference on Advanced        
Information Networking and Applications, Vol. 2. IEEE, 2006.  
 
[Qin2009] X. Qin, H. Jiang, A. Manzanares, X.-J Ruan, and S. Yin. "A dynamic             
load balancing for I/O-intensive applications on clusters," ACM Transactions        
on Storage, 5 (2009). 
 

103 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://www.pdsi-scidac.org/fsstats
http://www.pdsw.org/
http://www.nmc-probe.org/


[QMCPACK2015] http://www.qmcpack.org/ 
 
[QuantX2018] 3D XPoint® Technology. 
https://www.micron.com/products/advanced-solutions/3d-xpoint-technolog
y accessed on August 1, 2018. 
 
[Rajachandrasekar2013] Rajachandrasekar, Raghunath, et al. "A 1 PB/s file         
system to checkpoint three million MPI tasks." In Proceedings of the 22nd            
international symposium on High-Performance Parallel and Distributed       
Computing. ACM, 2013. 
 
[Reagana2003] Reagana, Matthew T., Habib N. Najm, Roger G. Ghanem, and           
Omar M. Knio. "Uncertainty quantification in reacting-flow simulations        
through non-intrusive spectral projection." Combustion and Flame 132,3        
(2003): 545-555. 
 
[Reed2004] Reed, Daniel A., ed. Scalable Input/Output: Achieving system balance.         
MIT Press, 2004. 
 
[Ren2014] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. “IndexFS:           
Scaling file system metadata performance with stateless caching and bulk          
insertion.” In Proceedings of the International Conference for High         
Performance Computing, Networking, Storage and Analysis, SC14, Nov. 2014 
 
[Rew1990] Rew, Russ, and Glenn Davis. "NetCDF: An interface for scientific           
data access." Computer Graphics and Applications, IEEE 10.4 (1990): 76-82. 
 
[Riedel1997] Riedel, Erik, and Garth Gibson. “Active disks-remote execution         
for network-attached storage.” No. CMU-CS-97-198. Carnegie-Mellon      
University Pittsburgh, PA, School of Computer Science, 1997. 
 
[Rizzo1997] Rizzo, Luigi. "Effective erasure codes for reliable computer         
communication protocols." ACM SIGCOMM computer communication review       
27.2 (1997): 24-36. 
 
[Ross2001] Ross, Robert, Daniel Nurmi, Albert Cheng, and Michael Zingale. "A case            
study in application I/O on Linux clusters." In Proceedings of the 2001 ACM/IEEE             
conference on Supercomputing, pp. 11-11. ACM, 2001. 
 
[Rumble2014] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout.         
Log-structured Memory for DRAM-based Storage. in the Proceedings of         
the12th USENIX Conference on File and Storage Technologies (FAST ’14),          
2014. 
 

104 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://www.qmcpack.org/
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology


[Sandia Data n.d.] Sandia application traces      
http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data/ 
 
[Sankaran2005] Sankaran, Sriram, et al. "The LAM/MPI checkpoint/restart        
framework: System-initiated checkpointing." International Journal of High       
Performance Computing Applications 19.4 (2005): 479-493. 
 
[SC n.d.] Department of Energy Office of Science. “Statement on Digital Data            
Management.” 
http://science.energy.gov/funding-opportunities/digital-data-management/ 
 
[SCSI2018] SCSI Standards Architecture. http://www.t10.org/scsi-3.htm     
accessed on August 1, 2018. 
 
[SNIA2017] Storage Network Industry Association. SNIA NVM Programming        
Model 1.2.  
https://www.snia.org/sites/default/files/technical_work/final/NVMProgram
mingModel_v1.2.pdf. 
 
[SNIA2018] Storage Network Industry Association. Swordfish Scalable Storage 
Management API Specification. 
https://www.snia.org/sites/default/files/technical_work/Swordfish/Swordfi
sh_v1.0.6_specification.pdf, May 25, 2018. 
 
[Samsung2017a] Samsung Key Value SSD Enables High Performance. Press 
release, 2017.  
 
[Samsung2017b] Ultra-Low Latency with Samsung Z-NAND SSD. Press release,         
2017. 
 
 
[Savoie2016] Lee Savoie, David K. Lowenthal, Bronis R. de Supinski, Tanzima 
Islam, Kathryn Mohror, Barry Rountree, and Martin Schulz, "I/O Aware Power 
Shifting," 2016 IEEE International Parallel and Distributed Processing 
Symposium (IPDPS), Chicago, IL, 2016, pp. 740-749. 
 
[SciServer2018] SciServer - Collaborative data-driven science,      
http://www.sciserver.org, accessed on August 31, 2018. 
 
[Schissel2014] D.P. Schissel, G. Abla, S.M. Flanagan, M. Greenwald, X. Lee, A.            
Romosan, A. Shoshani, J. Stillerman, J. Wright. Automated metadata,         
provenance cataloging and navigable interfaces: Ensuring the usefulness of         
extreme-scale data. Fusion Engineering and Design, Feb. 23, 2014. 

105 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

http://www.cs.sandia.gov/Scalable_IO/SNL_Trace_Data/
http://science.energy.gov/funding-opportunities/digital-data-management/
http://www.t10.org/scsi-3.htm
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/Swordfish/Swordfish_v1.0.6_specification.pdf
https://www.snia.org/sites/default/files/technical_work/Swordfish/Swordfish_v1.0.6_specification.pdf
http://www.sciserver.org/


 
[Schmuck2002] Schmuck, Frank B., and Roger L. Haskin. "GPFS: A shared-disk file            
system for large computing clusters." In FAST 2 (2002):19. 
 
[Schopf2002] J.M. Schopf, “A general architecture for scheduling on the grid.”           
Special issue on grid computing, Journal of Parallel and Distributed          
Computing, April 2002. 

[Scott2006] Scott, Steve, et al. "The BlackWidow high-radix Clos network."          
ACM SIGARCH Computer Architecture News 34.2 (2006). IEEE Computer         
Society. 
 
[SDA2018] Rambus Smart Data Acceleration Platform.      
https://www.rambus.com/emerging-solutions/smart-data-acceleration/ 
accessed August 1, 2018. 
 
[Seamons1994] Seamons, Kent E., and Marianne Winslett. "An efficient abstract          
interface for multidimensional array I/O." In Proceedings of Supercomputing'94, pp.          
650-659. IEEE, 1994. 
 
[Sevilla2015] M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt, S. Weil, G. 
Farnum, S. Fineberg. Mantle: a programmable metadata load balancer for the 
ceph file system. In the Proceedings of SC15: The International Conference 
High Performance Computing, Networking, Storage and Analysis, 2015. 
 
[Settlemyer2012] Settlemyer, B.W., Rao, N.S.V., Poole, S.W., Hodson, S.W.,         
Hicks, S.E., Newman, P.E., “Experimental analysis of 10Gbps transfers over          
physical and emulated dedicated connections.” In 2012 International        
Conference on Computing, Networking, and Communications (ICNC). IEEE,        
2012. 
 
[Shamis2015] Pavel Shamis, et al. UCX: An Open Source Framework for HPC            
Network APIs and Beyond. In the 2015 IEEE 23rd Annual Symposium on            
High-Performance Interconnects, 2015. 
 
[Shan2008] Shan, H., K. Antypas, and J. Shalf. “Characterizing and predicting           
the I/O performance of HPC applications using a parameterized synthetic          
benchmark.” In Proceedings of the 2008 ACM/IEEE conference on         
Supercomputing. IEEE Press, 2008. 
 
[Shende2006] Shende, Sameer S., and Allen D. Malony. "The TAU parallel           
performance system." The International Journal of High Performance        
Computing Applications 20, no. 2 (2006): 287-311. 
 

106 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.rambus.com/emerging-solutions/smart-data-acceleration/


[Sierra2017] Sierra - High Performance Computing LLNL.       
https://hpc.llnl.gov/hardware/platforms/sierra accessed on August 1, 2018. 
 
[Sigelman2010] Sigelman, Benjamin H., Luiz Andre Barroso, Mike Burrows,         
Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan          
Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure.        
Technical report, Google, Inc, 2010. 
 
[Sjostrand2008] Sjöstrand, Torbjörn, Stephen Mrenna, and Peter Skands. "A         
brief introduction to PYTHIA 8.1." Computer Physics Communications 178.11         
(2008): 852-867. 
 
[Son2010] Son, Seung Woo, Samuel Lang, Philip Carns, Robert Ross, Rajeev           
Thakur, Berkin Ozisikyilmaz, Prabhat Kumar, Wei-Keng Liao, Alok Choudhary.         
"Enabling active storage on parallel I/O software stacks." In IEEE 26th           
Symposium on Mass Storage Systems and Technologies (MSST), 2010, pp.          
1-12. IEEE, 2010. 
 
[Soumagne2013] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol,           
A. Afsahi, and R. Ross. Mercury: Enabling Remote Procedure Call for           
High-Performance Computing, IEEE International Conference on Cluster       
Computing, Sep 2013. 
 
[Snyder2015] Snyder, Shane, Philip Carns, Robert Latham, Misbah Mubarak,         
Robert Ross, Christopher Carothers, Babak Behzad, Huong Vu Thanh Luu,          
Surendra Byna, and Prabhat. Techniques for Modeling Large-scale HPC I/O          
Workloads. International Workshop on Performance Modeling,      
Benchmarking and Simulation of High Performance Computer Systems        
(PMBS15).  
 
[Snyder2016] Snyder, Shane, Philip Carns, Kevin Harms, Robert Ross, Glenn K.           
Lockwood, Nicholas J. Wright. Modular HPC I/O Characterization with         
Darshan. In Proceedings of 5th Workshop on Extreme-scale Programming Tools          
(ESPT 2016), 2016. 
 
[Son2017] Son, S.W., Sehrish, S., Liao, W. et al. J Supercomput (2017) 73: 2069.              
https://doi.org/10.1007/s11227-016-1904-7 
 
[Spafford2012] Spafford, Kyle and Vetter, Jeffery S. “Aspen: A domain specific           
language for performance modeling.” In Proceedings of the International Conference          
on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp.           
84:1–84:11, 2012.  
 
[Spelman2018] Spelman, Lisa. “Reimagining the Data Center Memory and 
Storage Hierarchy.” Editorial. May 2018. 

107 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://hpc.llnl.gov/hardware/platforms/sierra
https://doi.org/10.1007/s11227-016-1904-7


https://newsroom.intel.com/editorials/re-architecting-data-center-memory-
storage-hierarchy/ 
 
[STREAM2016] G. C. Fox, S. Jha, and L. Ramakrishnan, Eds., “STREAM2016:           
Streaming Requirements, Experience, Applications, and Middleware      
Workshop,” 2015. 
 
[Subramoni2008] Subramoni, H.; Marsh, G.; Narravula, S.; Ping Lai; Panda, D.K.           
"Design and evaluation of benchmarks for financial applications using advanced          
message queuing protocol (AMQP) over InfiniBand." Workshop on High         
Performance Computational Finance, 2008., pp. 1, 8, 16. Nov. 2008. 
 
[Summit2017] Summit - Oak Ridge Leadership Computing.       
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/ 
accessed on August 1, 2018. 
 
[Sun2014] Sun, Zhiwei, et al. "A lightweight data location service for           
nondeterministic exascale storage systems." ACM Transactions on Storage 10.3         
(2014): 12. 
 
[Tantisiriroj2011] Tantisiriroj, Wittawat, Seung Woo Son, Swapnil Patil, Samuel J.          
Lang, Garth Gibson, and Robert B. Ross. "On the duality of data-intensive file system              
design: reconciling HDFS and PVFS." In Proceedings of 2011 International          
Conference for High Performance Computing, Networking, Storage and Analysis, p.          
67. ACM, 2011. 
 
[Thakur1999] Thakur, Rajeev, William Gropp, and Ewing Lusk. "Data sieving          
and collective I/O in ROMIO." Seventh Symposium on the Frontiers of           
Massively Parallel Computation, 1999. IEEE, 1999. 
 
[Thapaliya2016] S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror and A.           
Moody, "Managing I/O Interference in a Shared Burst Buffer System," 2016           
45th International Conference on Parallel Processing (ICPP), Philadelphia, PA,         
2016, pp. 416-425. 
 
[Thereska2013] Thereska, Eno, et al. "Ioflow: A software-defined storage         
architecture." In Proceedings of the Twenty-Fourth ACM Symposium on Operating          
Systems Principles. ACM, 2013. 
 
[Thottethodi2006] Thottethodi, Mithuna S., Vijay S. Pai, Rahul T. Shah, T. N. Vijaykumar             
and Jeffrey S. Vitter. “Performance models and systems optimization for disk-bound           
applications.” High End Computing University Research Activity NSF 06-503 (2006) 
 
[Titan2015] https://www.olcf.ornl.gov/titan/ 
 

108 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/titan/


[Trinity2015] Trinity - Los Alamos National Laboratory.       
https://www.lanl.gov/projects/trinity/ accessed on August 2, 2018. 
 
[Uselton2009] Uselton, Andrew. “Deploying server-side file system monitoring at         
NERSC.” In Proceedings of the Cray Users Group meeting, 2009. 
 
[Uselton2010] Uselton, A., M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf,              
K. L. Karavanic, and L. Oliker, “Parallel I/O performance: From events to            
ensembles.” In 2010 IEEE International Symposium on Parallel & Distributed          
Processing (IPDPS). IEEE, 2010, pp. 1–11. 
 
[Vairavanathan2012] Emalayan Vairavanathan, Samer Al-Kiswany, Lauro Beltrão       
Costa, Zhao Zhang, Daniel S. Katz, Michael Wilde, Matei Ripeanu (2012): “A            
workflow-aware storage system: An opportunity study.” In Proceedings of the 2012           
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing          
(CCGrid 2012). 

[Vampir n.d.] https://www.vampir.eu/ 
 
[VanEssen2012] B. Van Essen, R. Pearce, S. Ames and M. Gokhale, "On the Role              
of NVRAM in Data-intensive Architectures: An Evaluation," 2012 IEEE 26th          
International Parallel and Distributed Processing Symposium, Shanghai, 2012, pp.         
703-714. 
 
[Vavilapalli2013] V. K. Vavilapalli et al. “Apache Hadoop YARN: Yet another resource            
negotiator.” In SoCC’13, Santa Clara, CA, October 1-3, 2013. 
 
[Vazhkudai2017] Sudharshan S. Vazhkudai, Ross Miller, Devesh Tiwari,        
Christopher Zimmer, Feiyi Wang, Sarp Oral, Raghul Gunasekaran, and Deryl          
Steinert. 2017. GUIDE: a scalable information directory service to collect,          
federate, and analyze logs for operational insights into a leadership HPC           
facility. In Proceedings of the International Conference for High Performance          
Computing, Networking, Storage and Analysis (SC '17). ACM, New York, NY, USA,            
Article 45, 12 pages. 
 
[VeloC n.d.] http://veloc.readthedocs.io/en/latest/ 
 
[Venkataraman2011] Venkataraman, Shivaram, Niraj Tolia, Parthasarathy      
Ranganathan, and Roy H. Campbell. "Consistent and durable data Structures          
for non-volatile byte-addressable memory." In FAST, pp. 61-75. 2011. 
 
[Vetter2016] Vetter, J. et al. Exascale Requirements Review for Advanced          
Scientific Computing Research, Advanced Scientific Computing Research, DOE        
Office of Science, Rockville, Maryland, September 27-29, 2016. 

109 
Storage Systems and Input/Output 2018 Pre-Workshop Document 

https://www.lanl.gov/projects/trinity/
https://www.vampir.eu/


[Vincent2018] Vincent, Lionel and Gaël Goret. Self-Optimized Strategy for IO          
Accelerator Parametrization. In Proceedings of the Workshop On        
Performance and Scalability of Storage Systems (WOPSSS) 2018. 
 
[Vijayakumar2009] Vijayakumar, K, F. Mueller, X. Ma, and P. C. Roth, “Scalable            
I/O tracing and analysis.” In Proceedings of the 4th Annual Workshop on            
Petascale Data Storage, ser. PDSW ’09. New York, NY, ACM, 2009, pp. 26–31 
 
[Vishwanath2011a] Vishwanath, Venkatram, Mark Hereld, Vitali Morozov, and        
Michael E. Papka. "Topology-aware data movement and staging for I/O          
acceleration on Blue Gene/P supercomputing systems." In Proceedings of         
2011 International Conference for High Performance Computing, Networking,        
Storage and Analysis, p. 19. ACM, 2011. 
 
[Vishwanath2011b] Vishwanath, Venkatram, Mark Hereld, Michael E. Papka.        
"Toward simulation-time data analysis and i/o acceleration on leadership-class         
systems." In IEEE Symposium on Large Data Analysis and Visualization (LDAV),           
2011, pp. 9-14. IEEE, 2011. 
 
[Wachs2009] Matthew Wachs and Gregory R. Ganger. Co-scheduling of Disk          
Head Time in Cluster-based Storage. 28th International Symposium On         
Reliable Distributed Systems September 27-30, 2009. 

[Wang2002] Wang, An-I, et al. “Conquest: Better performance through a          
disk/persistent-RAM hybrid files system.” In Proceedings of USENIX Annual         
Technical Conference, 2002. 

[Wang2016] Feiyi Wang, Veronica G. Vergara Larrea, Dustin Leverman, Sarp 
Oral. FCP: A Fast and Scalable Data Copy Tool for High Performance Parallel 
File Systems. In the Proceedings of the Cray Users’ Group, 2016. 
 
[Watkins2013] N. Watkins, C. Maltzahn, S. Brandt, I. Pye, and A. Manzanares. In-vivo             
storage system development. In BigDataCloud ’13 (in conjunction with EuroPar          
2013), Aachen, Germany, August 26, 2013. 
  
[Watson1995] Watson, R.W.; Coyne, R.A., "The Parallel I/O Architecture of the           
High-Performance Storage System (HPSS)." In Proceedings of the Fourteenth         
IEEE Symposium on Mass Storage Systems, 1995: Storage - At the Forefront of             
Information Infrastructures, pp. 27, 44, Sept. 11-14, 1995.  
  
[Weil2004] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic               
metadata management for petabyte-scale file systems. In SC’04, Pittsburgh,         
PA, Nov. 2004. 
 

110 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



[Weil2006] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and           
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file system.  
In Proceedings of the 2006 Symposium on Operating Systems Design and           
Implementation, pp. 307-320. University of California, Santa Cruz, 2006. 
 
[Weil2007] S. A. Weil. “Ceph: Reliable, scalable, and high-performance         
distributed storage.” Ph.D. thesis, University of California at Santa Cruz,          
December 2007. 
 
[Welch2008], Brent, Marc Unangst, Zainul Abbasi, Garth A. Gibson, Brian          
Mueller, Jason Small, Jim Zelenka, Bin Zhou. "Scalable performance of the           
Panasas parallel file system." In FAST, vol. 8, pp. 1-17. 2008. 
  
[Whitlock2011] B. Whitlock, J.M. Favre, J.S. Meredith, "Parallel In Situ Coupling           
of a Simulation with a Fully Featured Visualization System." In Eurographics           
Symposium on Parallel Graphics and Visualization, pp 101-109, 2011. 
  
[Wieczorek2009] Marek Wieczorek, Andreas Hoheisel, and Radu Prodan. 2009.         
Towards a general model of the multi-criteria workflow scheduling on the grid.            
Future Generation Computing Systems 25.3 (March 2009): 237-256. 
 
[Williams1997] Williams, Dean N. “The PCMDI software system: Status and          
future plans.” Program for Climate Model Diagnosis and Intercomparison,         
University of California, Lawrence Livermore National Laboratory, 1997. 
 
[Windus2015] Windus, T., et al. Basic Energy Sciences Exascale Requirements          
Review, Advanced Scientific Computing Research and Basic Energy Sciences,         
DOE Office of Science, Rockville, Maryland, November 3-5, 2015. 
 
[Wolstencroft2013] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan        
Williams, David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra        
Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty,          
Abraham Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole            
Goble. “The Taverna workflow suite: Designing and executing workflows of         
Web Services on the desktop, web or in the cloud.” Nucleic Acids Research 41(W1):             
W557-W561, 2013. 
 
[Wozniak2010] Wozniak, Justin M., Bryan Jacobs, Rob Latham, Sam Lang, Seung           
Woo Son, and Robert Ross. "C-MPI: A DHT implementation for grid and HPC             
environments." Preprint ANL/MCS-P1746-0410 (2010): 04-2010. 
 
[Wozniak2014] Justin M. Wozniak, Michael Wilde, Ian T. Foster “Language features           
for scalable distributed-memory dataflow computing.” In Proceedings, Data-flow        
Execution Models for Extreme-scale Computing at PACT 2014 
 

111 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



[Wu2009] Wu, Kesheng, Sean Ahern, E. Wes Bethel, Jacqueline Chen, Hank Childs,            
Estelle Cormier-Michel, Cameron Geddes et al. "FastBit: Interactively searching         
massive data." Journal of Physics: Conference Series, 180.1, p. 012053. IOP           
Publishing, 2009. 
 
[Wu2011] X. Wu and A. L. N. Reddy. SCMFS: A file system for Storage Class               
Memory. SC '11: Proceedings of 2011 International Conference for High          
Performance Computing, Networking, Storage and Analysis, 2011. 
 
[Xie2017] Xie, Bing, Yezhou Huang, Jeffrey S. Chase, Jong Youl Choi, Scott            
Klasky, Jay F. Lofstead and Sarp Oral. “Predicting Output Performance of a            
Petascale Supercomputer.” HPDC (2017). 
 
[Xu2016] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for 
Hybrid Volatile/Non-volatile Main Memories. in the Proceedings of the 14th 
USENIX Conference on File and Storage Technologies (FAST ’16), 2016. 
 
[TXu2016] Tianqi Xu, Kento Sato and Satoshi Matsuoka, "CloudBB: Scalable 
I/O Accelerator for Shared Cloud Storage," 2016 IEEE 22nd International 
Conference on Parallel and Distributed Systems (ICPADS), Wuhan, 2016, pp. 
509-518. 
 
[Yildiz2016] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross and G. Antoniu, "On the 
Root Causes of Cross-Application I/O Interference in HPC Storage Systems," 
2016 IEEE International Parallel and Distributed Processing Symposium 
(IPDPS), Chicago, IL, 2016, pp. 750-759. 
 
[Zadok2006] Zadok, Erez, Ethan L. Miller and Klaus Mueller. “File system tracing,            
replaying, profiling, and analysis on HEC systems.” High End Computing University           
Research Activity NSF 06-503 (2006). 
 
[Zhang2010] Zhang, Yupu, et al. "End-to-end data integrity for file systems: A            
ZFS Case Study." In the 8th USENIX Conference on File and Storage            
Technologies, 2010. 
 
[Zhang2012] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi,              
“Enabling in-situ execution of coupled scientific workflow on multi-core platform.”          
In Proceedings of the 26th IEEE International Parallel & Distributed Processing           
Symposium (IPDPS 2012), Shanghai, China, pp. 1352-1363, May 2012. 
 
[Zhang2016] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael 
Kaminsky, Lin Ma, and Rui Shen. Reducing the Storage Overhead of 

112 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



Main-Memory OLTP Databases with Hybrid Indexes. In the proceedings of the 
2016 International Conference on Management of Data (SIGMOD ‘16), 2016. 
 
[Zhang2017] Zhang, Fan, et al. "In-memory staging and data-centric task 
placement for coupled scientific simulation workflows." Concurrency and 
Computation: Practice and Experience 29.12 (2017): e4147. 
 
[Zhao2004] Zhao, Ben Y., et al. "Tapestry: A resilient global-scale overlay for            
service deployment." IEEE Journal on Selected Areas in Communications 22.1          
(2004): 41-53. 
 
[Zhao2007] Zhao, Yong, Mihael Hategan, Ben Clifford, Ian Foster, Gregor Von           
Laszewski, Veronika Nefedova, Ioan Raicu, Tiberiu Stef-Praun, Michael Wilde. "Swift:          
Fast, reliable, loosely coupled parallel computation." In IEEE Congress on Services,           
2007, pp. 199-206. IEEE, 2007. 
 
[Zhao2014] Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R.,                 
Raicu, I. “FusionFS: Toward supporting data-intensive scientific applications on         
extreme-scale high-performance computing systems.” In Proceedings of the IEEE         
International Conference on Big Data. 2014. 
 
[Zheng2014] Qing Zheng, Kai Ren, and Garth Gibson. BatchFS: Scaling the file            
system control plane with client-funded metadata servers. In Proceedings of          
the 9th Parallel Data Storage Workshop, PDSW '14, pages 1-6. IEEE Press,            
2014. 
 
  

113 
Storage Systems and Input/Output 2018 Pre-Workshop Document 



9 Acknowledgments 
 
The organizers wish to thank a number of people in advance for their assistance              
with the workshop. The organizers wish to thank Lucy Nowell for sponsoring the             
meeting and for facilitating and soliciting contributions from key science domains.           
Additionally, the organizers wish to thank ORISE and Deneise Terry for managing            
the registration and logistics of the workshop series. 

114 
Storage Systems and Input/Output 2018 Pre-Workshop Document 


