Neutron capture cross section measurements on short-lived isotopes

PI: Sean Liddick
CoPI: Artemis Spyrou
Presenter: Andrea Richard
SSAP Symposium, Feb. 26-27, 2020
Neutron capture cross section measurements on short-lived isotopes

• Scientific Challenge
 – Constrain neutron-capture cross sections of short-lived nuclei for stewardship science and astrophysical production of heavy elements.

• Goals
 – Constrain neutron-capture cross sections for influential reactions in r-process scenarios in the Co-Cu region.
 – Constrain neutron-capture cross sections of interest for stockpile stewardship approaching ^{95}Zr
 – Train graduate students and postdoctoral researchers in nuclear science techniques and connect them with staff at the national laboratories.
Neutron capture cross section measurements on short-lived isotopes

- **PI:** Sean Liddick
 Associate Prof. National Superconducting Cyclotron Laboratory and Department of Chemistry

- **Co-PI:** Artemis Spyrou
 Professor National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy

- **Two graduate students and one postdoc supported:**
 - Rebecca Lewis (MSU, graduate student → NNSA GFP Summer 2019)
 - Debra Richman (MSU, graduate student)
 - Benjamin Crider (postdoctoral researcher → MissSU Assistant Professor)
 - Mallory Smith (MSU, postdoctoral researcher → staff National Superconducting Cyclotron Laboratory)
 - Andrea Richard (MSU, postdoctoral researcher)

- **Peer-reviewed papers**
Significant laboratory engagement by supported graduate students

- **Rebecca Lewis**
 - 3-month placement at LANL in 2017.
 - Performed work with neutron science experimenters and theorists at LANL including A. Couture and T. Kawano
 - Manuscript on $^{73}\text{Zn}(n,\gamma)$ PRC 2019.
 - Completed thesis in 2019
 - NNSA GFP Summer 2019!
Significant laboratory engagement by supported graduate students

• Debra Richman
 – Permanently placed at Los Alamos National Laboratory working within the P-27 group with A. Couture and S. Mosby.
 – Performing analysis to extract neutron-capture cross section of 59Fe, a key reaction rate in the astrophysical s-process.
 – Analysis in progress
 – First results presented at Nuclear Astrophysics winter school Russbach 2017, NASA Laboratory Astrophysics 2018, DNP 2019
Scientific program focused on rapid-neutron capture process, slow-neutron capture process, and stewardship science.

- Inferring neutron capture cross sections on short-lived nuclei receiving strong support from NSCL and ANL Program Advisory Committee.

<table>
<thead>
<tr>
<th>Completed</th>
<th>Approved</th>
</tr>
</thead>
</table>

- A. Spyrou (MSU): Study of Kr isotopes for astrophysical applications.
- N. Scielzo (LLNL): Determination of the 92Sr neutron-capture cross section and fission product burn up.
- S. Liddick (MSU): Neutron-capture cross section constraints in neutron-rich Sn and Sb isotopes
- Approved
- S. Liddick (MSU): Constraints on nucleosynthesis in the iron region
- A. Spyrou (MSU): Constraints on neutron-capture reactions around $N=82$
- A. C. Larsen (Oslo): The rare-earth r-process peak: $^{156-159}$Sm(n,γ) reaction rates constrained with the beta-Oslo method
- Approved
- A. Spyrou (MSU): Constraining supernova models with SuN
- N. Scielzo (LLNL): Study of Kr isotopes for astrophysical applications.
Nuclear level densities and γ-ray strength functions are the dominate uncertainties in (n,γ) calculations

Hauser – Feshbach

- **Nuclear Level Density**
 Constant T+Fermi gas, back-shifted Fermi gas, superfluid, microscopic

- **γ-ray strength function**
 Generalized Lorentzian, Brink-Axel, various tables

- **Optical model potential**
 Phenomenological, Semi-microscopic

$^{95}\text{Sr}(n,\gamma)^{96}\text{Sr}$

TALYS
Using beta-decay total absorption spectroscopy to infer neutron capture cross sections

- Measure beta decay of nucleus.
 - Extract level densities and gamma-ray strength function
- Need total excitation energy of the daughter isotope.
 - Can’t use beta-decay electron (three body process)
- Instead, measure total emitted photon energy.

- Require high detection efficiency.
- Extract nuclear level density and γ-ray strength function.
- Insert both quantities into a statistical reaction model to constrain (n,γ) rate.
(n,γ) uncertainties impact the rapid-neutron capture process for heavy element creation.

Monte-Carlo variations of (n,γ) rates within a factor $100 - 10 - 2$ (light – darker – dark bands)
Sensitive \((n,\gamma)\) rates in the neutron-rich Ni region

- Inferred neutron capture rates of \(^{68,69}\text{Ni}\) and \(^{73}\text{Zn}\) have already been performed.
- Extract neutron capture rates of \(^{71,72,73}\text{Ni}\).
- Strong local impact on astrophysical abundance predictions.
- Covers a number of high sensitivity reactions.
- Provides systematics across a chain of five Ni isotopes.

Nuclear level densities and gamma-ray strength functions in the neutron-rich Ni region

- Constrained nuclear levels densities, gSF, and neutron capture cross sections on 71,72,73Ni
- Combined with prior results provides systematics across a chain of five Ni isotopes.
- Impact on astrophysical abundance predictions underway.
Neutron capture needs for diagnostics: 95Zr

- 95Zr can be used as a yield indicator.
- However, 95Sr is short lived and can’t be made into a target.
- UCB, LLNL, MSU, Oslo collaboration.
Decay of ^{93}Rb: Providing (n,γ) for ^{92}Sr

- Experiment to deliver thermal ^{93}Rb within last year to perform stopped beam β-decay with ^{93}Rb.
- Moving tape collector and interior plastic scintillator completed previously.

^{93}Rb

$t_{1/2} = 5.84(2)$ s

$t_{1/2} = 7.43(3)$ m

$t_{1/2} = 10.18(8)$ h

^{93}Sr

^{93}Y

$\beta -$

Analysis in progress; working on response function of plastic scintillator within SuN.

Total Absorption Spectra

Production Runs ^{93}Rb

Daughter Runs ^{93}Y

Only levels in ^{93}Y

Count $\times 10^3$
Testing Spin Independence of γSF: Preliminary beam test with 70Cu isomeric states

- Test the independence of the γSF from different initial spin distributions.
- 70Cu has three different isomeric states.
- Experiment completed summer 2019, analysis is ongoing.
Conclusions

- Application of technique to infer neutron capture cross sections on short-lived neutron-rich nuclei ongoing.
- Applicable to studies of rapid-neutron capture process, slow-neutron capture process, and stewardship science.
 - Cross section constrained for a range of neutron-rich Ni isotopes.
 - Neutron-rich 59Fe analysis in progress
 - Stockpile stewardship analysis on neutron-rich Sr isotopes in progress
- Investigation of spin dependence of strength function using isomeric states in 70Cu – analysis in progress
- Funding supports two graduate students and one postdoctoral researcher strongly connected to the national laboratories.
- One graduate student has taken a position with the NNSA GFP.
Thanks

<table>
<thead>
<tr>
<th>Michigan State University</th>
<th>University of Oslo</th>
<th>LLNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A. Spyrou</td>
<td>• A.C. Larsen</td>
<td>• D.L. Bluel</td>
</tr>
<tr>
<td>• S.N. Liddick</td>
<td>• M. Guttormsen</td>
<td>• N. Scielzo</td>
</tr>
<tr>
<td>• B.P. Crider</td>
<td>• L. Crespo Campo</td>
<td></td>
</tr>
<tr>
<td>• K. Childers</td>
<td>• S. Siem</td>
<td></td>
</tr>
<tr>
<td>• A.C. Dombos</td>
<td>• T. Renstrøm</td>
<td></td>
</tr>
<tr>
<td>• R. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• F. Naqvi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• C.J. Prokop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• S.J. Quinn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A. L. Richard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A. Rodriguez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• C.S. Sumithrarachchi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• R.G.T. Zegers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central Michigan University</th>
<th>Notre Dame</th>
</tr>
</thead>
<tbody>
<tr>
<td>• G. Perdikakis</td>
<td>• A. Simon</td>
</tr>
<tr>
<td>• S. Nikas</td>
<td>• R. Surman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LANL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A. Couture</td>
</tr>
<tr>
<td>• S. Mosby</td>
</tr>
<tr>
<td>• M. Mumpower</td>
</tr>
</tbody>
</table>
Questions?