Microscopic Description of the Fission Process
Witold Nazarewicz, Michigan State University
2020 Stewardship Science Academic Programs Symposium
February 26–27, 2020, Washington, DC
SSAA grant DE-NA0003885 (since 2003)

The neutron strikes the nucleus and is absorbed.

The absorbed neutron causes the nucleus to undergo deformation.

In about 10^{-14} second, one of the deformations is so drastic that the nucleus cannot recover.

The nucleus fissions, releasing two or more neutrons.

In about 10^{-12} second, the fission fragments lose their kinetic energy and come to rest, emitting a number of gamma rays. Now the fragments are called fission products.

The fission products lose their excess energy by radioactive decay, emitting beta particles and gamma rays over a lengthy time period (transuranium elements).
Theoretical Description of the Fission Process

The Team

PI: Witold Nazarewicz

PhD students:
- Daniel Lay
- Joshua Wylie
- Zachary Matheson (now NNSA graduate fellow)

Post Docs: Samuel Giuliani
 + Jhilam Sadhukhan (Kolkata)
 + Nicolas Schunck (LLNL)
 + NUCLEI (SciDAC-4)
 + Statistics and Probability at MSU

The Team

PI: Witold Nazarewicz

PhD students:
- Daniel Lay
- Joshua Wylie
- Zachary Matheson (now NNSA graduate fellow)

Post Docs: Samuel Giuliani
 + Jhilam Sadhukhan (Kolkata)
 + Nicolas Schunck (LLNL)
 + NUCLEI (SciDAC-4)
 + Statistics and Probability at MSU

- Fission is a complex process involving the collective motion of all nucleons – One of the most difficult problems in nuclear physics
- Most practical applications have been based on simplified theories tuned to existing data
- We are developing a microscopic model that will be predictive

• Fission is a complex process involving the collective motion of all nucleons – One of the most difficult problems in nuclear physics
• Most practical applications have been based on simplified theories tuned to existing data
• We are developing a microscopic model that will be predictive

https://people.nscl.msu.edu/~witek/fission/fission.html
Five components of our program

I. Quantified input (optimized energy density functional)

II. Microscopic model based on a quantified input
 - Density functional theory
 - Stochastic Langevin framework

III. Confrontation with experiment
 - Actinides and transfermiums (superheavy nuclei)
 - Pt-Po region

IV. Systematic predictions
 - Superheavy elements
 - Astrophysical applications: r-process

V. Uncertainty quantification
 - Linear regression
 - Bayesian machine learning
 - Bayesian model averaging
Fission fragment yields

Graphs and Data

- **Prefragment Z**: Shows data points for different isotopes, indicated by symbols like squares and circles, labeled with elements like Pt, Fm, and others.
- **Prefragment N**: Similar setup with additional data points for isotopes like Pu and Fm.
- **Yield (%)**: Plots showing the percentage yield against fragment mass and charge for isotopes labeled with 178Pt, 240Pu, 254Fm, and 256Fm.

Key Observations

- The graphs illustrate the distribution of prefragments with respect to Z and N.
- The yield values are plotted against fragment mass and charge, highlighting the spread of different isotopes.

References

- The data is likely derived from experimental results or simulations related to nuclear physics or a specific reactor's performance.
Heavy Cluster Decay

$^{294\text{Og}} \rightarrow ^{208\text{Pb}} + ^{86\text{Kr}}_{50}$

DFT+Langevin Robust prediction: extremely asymmetric fission
Synthesis of elements during the r-process is sensitive to fission properties of (super)heavy nuclei, particularly in neutron star mergers where the flux of free neutrons is high.

Abundances (in log scale) at freeze-out
Uncertainty Quantification and Bayesian Machine Learning

Residual of an observable O:

$$\delta_O(Z, N) = O^{\text{exp}}(Z, N) - O^{\text{th}}(Z, N)$$

Estimate of an observable O:

$$O^{\text{est}}(Z, N) = O^{\text{th}}(Z, N) + \delta^{\text{em}}_O(Z, N)$$

Emulator of the residual

Supervised learning: the nuclear modeling and the choice of priors represent two aspects of the supervision.
11 global nuclear mass models: Skyrme, Gogny D1M, BCPM, HFB-24, FRDM-2012

rms mass deviation $\sim 0.6 – 6$ MeV

• Machine Learning: The emulators of separation-energy residuals and confidence intervals defining theoretical error bars are constructed using Bayesian Gaussian processes.

• After establishing statistical methodology and parameters, we carried out extrapolations towards particle driplines.

• We carry out Bayesian Model Averaging to make quantified predictions using several models.

$$p(M_k | y) = \frac{p(y | M_k) \pi(M_k)}{\sum_{\ell=1}^{K} p(y | M_\ell) \pi(M_\ell)}$$
Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei

"0" corresponds to the neutron number of the lightest isotope for which an experimental separation energy value is available.

\[p_{2p} := p(S_{2p}^* < 0 \cap S_{1p}^* > 0 | S_{1p}/2p) \]

Quantified limits of the nuclear landscape
“0” corresponds to the neutron number of the heaviest isotope for which an experimental separation energy value is available.
Prospects

Current Status:
• Sophisticated calculations of spontaneous fission lifetimes: more collective degrees of freedom taken into account (currently 4D); the fission path determined by minimizing the collective action.
• Fission yield distributions explained by a statistical treatment with diffusive dynamics.
• Identification of pre-fragments through nucleon localizations.
• Ability to carry out reliable extrapolations in mass and isospin through Gaussian processes/neural networks and Bayesian model averaging.

Challenges:
• Extension of the framework to induced fission.
• Consistent description of various experimental fission data, including TKEs
• Global calculations of fission yields for r-process simulations.
• Quantification of uncertainties in fission observables using Bayesian Machine Learning techniques
• Deliverables since the last Symposium
 • 4 publications
 • 3 papers submitted
 • 1 program report
 • 16 presentations
 • 1 postdoc, another postdoc will join us soon
 • 3 students involved. Zach Matheson received NGFP fellowship.

• Quantification of margins and uncertainties is important
• Ongoing collaboration with LLNL
• Fission is a perfect problem for the extreme scale computing. Our project is well aligned with NUCLEI SciDAC-4 ASCR project.
BACKUP
The most promising new candidates for the true 2p radioactivity:

30Ar, 34Ca, 39Ti, 42Cr, 58Ge, 62Se, 66Kr, 70Sr, 74Zr, 78Mo, 82Ru, 86Pd, 90Cd, 103Te