A Novel Technique for the Production of Robust Actinide Targets

Ani Aprahamian

University of Notre Dame

DE-NA0003888
The **GOAL** of this project is to develop new approaches for the preparation of actinide targets that are isotopically pure, cost-efficient, reliable, robust, and highly uniform with controlled thicknesses.

The program relies on the use of rapid **solution combustion synthesis** (SCS) processes between actinide metal nitrates with different organic compounds for the preparation of thin films as targets for nuclear science measurements.

OBJECTIVES:

1. Investigate chemical reactions between oxidizers and organic compounds
2. Investigate thin films deposition
3. Investigate electro-spraying techniques with actinide-oxide clusters
4. Create actinide targets by electro-spraying
5. Characterization and testing of targets
6. Modernization of target preparations

MILESTONES

- Determine the dynamics and kinetics of SCS for actinides
 September 30, 2019
- Apply the method to produce uranium (U) targets and study characteristics
 September 30, 2020
- Extend the procedure to other actinides such as Pu and Am.
 September 30, 2021
Team

Graduate Students

A. Aprahamian
P. C. Burns
K. Manukyan

S. Dede
Physics
Texas A&M

A. Majumdar
Physics
Notre Dame

Jordan Roach
Chemistry
Notre Dame

Sabrina Strauss
Physics
Notre Dame

Undergraduate Students

Jacob Galden
Chem. Eng.

Nathaniel Hiott
Physics

Actinide Center of Excellence
National Nuclear Security Administration

Cyclotron Institute
Articles & Talks

Articles:
5. P. Sapkota, A. Aprahamian, K.Y. Chan, B. Frentz, K.T. Macon, S. Ptasinska, D. Robertson, K. Manukyan, Irradiation-induced reactions at the CeO₂/SiO₂/Si interface, Accepted to *Journal of Chemical Physics*

Presentations:
1. solution combustion synthesis; 2. Spin coating; 3. Glove boxes for Pu and Am; 4. Alpha spectrometer (6 simultaneous)
First step: SCS in surrogate systems

Fe(NO_3)_3 + Hexamethylenetetramine (HMTA)

- **HMTA/Fe(NO_3)_3 = 2**
 - $T_{\text{max}} = 1370^\circ C$

- **HMTA/Fe(NO_3)_3 = 3**
 - $T_{\text{max}} = 900^\circ C$

- **HMTA/Fe(NO_3)_3 = 5**
 - $T_{\text{max}} = 640^\circ C$

Calculated adiabatic temperature and distribution of equilibrium solid products

Ni(NO_3)_2 + Glycine (C_2H_5NO_2)

- **Temperature, K**
 - **HMTA**
 - **Glycine**

- **Fuel to oxidizer ratio**
 - (1) - Glycine, $\phi = 0.75$, $E = 107\pm13$ kJ/mol
 - (2) - Glycine, $\phi = 1.25$, $E = 54\pm8$ kJ/mol
 - (3) - HMTA, $\phi = 0.75$, $E = 140\pm18$ kJ/mol
 - (4) - HMTA, $\phi = 2.25$, $E = 110\pm25$ kJ/mol

- **Ln(νT)** vs. **Reciprocal temperature, K**
 - (1) - (2)

Inorganic chemistry 58 (9), 5583-5592 (2019)

Article in preparation
Second Step: SCS in $\text{UO}_2(\text{NO}_3)_2 \cdot n\text{H}_2\text{O} + \text{C}_2\text{H}_5\text{NO}_2$ system

Calculated Combustion Temp

Calculated Product Composition

Ratio of glycine /Uranium Nitrite

Poster by Jordan Roach

Article in preparation
Characteristics of uranium oxides

PXRD of Glycine:Uranyl Nitrate Combustion Products

20-50nm

SEM

20-50nm
Mechanism and Kinetics of UO$_2$(NO$_3$)$_2$·nH$_2$O + C$_2$H$_5$NO$_2$ (glycine) reaction

\[
\begin{align*}
\text{[\(UO_2\)\(_3\)(Gly)\(_2\)O\(_3\)(H_2O)\(_3\)NO}_3]
\end{align*}
\]

\[
P_2_1_2_1
\]

\[
a = 10.059(7) \, \text{Å} \\
b = 12.386(8) \, \text{Å} \\
c = 16.024(11) \, \text{Å} \\
\alpha = \beta = \gamma = 90^\circ
\]

\[
V = 1997(2) \, \text{Å}^3
\]

\[
Z = 4
\]

\[
R_1 = 4.56\%
\]

\[
wR_2 = 12.61\%
\]

Raman Spectra of Glycine-Uranil Nitrate Solutions with Increasing Molar Ratios

DSC Plots for Combustion Samples at Increasing Heating Rates

Peaks 1, 2, 3
Target preparation: Spin Coating of Reactive Solutions

1. Reactive solution
2. Reactive gel
3. Heat treatment
4. Actinide layer

Poster by Ashabari Majumdar
Target Characterization

XRF imaging

Cross-sectional SEM

RBS

α-particle spectroscopy

Preliminary
Target Characterization: TEM and EDS analysis

- Uranium oxide
- Aluminum

EDS analysis results:
- Al Kα1
- O Kα1
- U Lα1
Heating of Al sheets at 300°C before spinning

Heating time

30 min

60 min

90 min
Target preparation: Electrospraying of reactive solutions

- No surface treatment substrate
- Plasma and ozone treatment
- Heat and ozone treatment

Poster by Stefania Dede
Target preparation: Other Approaches

Dissolution – crystallization of uranium oxides.
Drop casting or spraying methods for thin target fabrication.

Synthesis of U_3O_8

Method 1:
Solution combustion of uranyl nitrate + glycine solutions

Method 2:
High-temperature calcination (HTC) of uranyl nitrate

Processing

- sonication of aqueous suspensions of U_3O_8 allowed to rest for 20 min (A and B).
- drop casting of suspended materials on Al (C)
- evaporation of solvent in air or humidity chamber (D)
Target Stability: Ion irradiation tests

- CeO$_2$/Si material
- Ar$^{2+}$ beam (0.8 - 1.6 MeV)
- 1·1012 to 1·1018 ion/cm2
- Post-irradiation vacuum annealing at (25-500°C)
High-Resolution TEM Images & XPS spectra of Irradiated Targets

Non-irradiated CeO$_2$/Si (A), irradiated with $1\cdot10^{14}$ (B) and $1\cdot10^{16}$ ion/cm2 (C) fluences, and annealed (D) after irradiation ($1\cdot10^{16}$ ion/cm2)

De-convoluted XPS spectra for CeO$_2$ thin films deposited on Si: non-irradiated (a,e); irradiated with $1\cdot10^{14}$ ion/cm2 (b,f) and $1\cdot10^{16}$ ion/cm2 (c,g) fluences, as well as those samples annealed in vacuum at 500°C (d,h) after irradiation ($1\cdot10^{16}$ ion/cm2).

Article is accepted (Journal of Chemical Physics)
Next steps

- Continue research in bulk combustion synthesis between oxidizers and organic compounds to tailor reactive solutions for target preparation.
- Continue studies of uranium oxide thin film deposition from reactive solutions on different backings using spin coating and electrospray methods.
- Investigate electro-spraying techniques with actinide-oxide clusters.
- Perform in-depth characterization of targets and test them after irradiation.
- Continue dissemination of results, facilitate the modernization of targetry, and target preparation.
• New instrumentation on combustion synthesis, spin coating, electrospray deposition methods has been developed.
• The students trained on a large variety of chemistry, materials science and nuclear physics techniques.
• The first milestone has been achieved. Essential information on the dynamics and kinetics of combustion synthesis reactions for depleted uranium oxides have been obtained.
• A large number of targets have been prepared and characterized by an array of spectroscopic, microscopic, and ion-beam analysis methods.