Neutron capture cross section measurements on short-lived isotopes

PI: Sean Liddick
CoPI: Artemis Spyrou
SSAP Symposium, Feb. 21-22, 2018
Neutron capture cross section measurements on short-lived isotopes

• Scientific Challenge
 – Constrain neutron-capture cross sections of short-lived nuclei for stewardship science and astrophysical production of heavy elements.

• Goals
 – Constrain neutron-capture cross sections for influential reactions in r-process scenarios in the Co-Cu region.
 – Constrain neutron-capture cross sections of interest for stockpile stewardship approaching ^{95}Zr
 – Train graduate students and postdoctoral researchers in nuclear science techniques and connect them with staff at the national laboratories.
Neutron capture cross section measurements on short-lived isotopes

- **PI:** Sean Liddick
 Associate Prof. National Superconducting Cyclotron Laboratory and Department of Chemistry

- **Co-PI:** Artemis Spyrou
 Associate Prof. National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy

- **Two graduate students and one postdoc supported:**
 - Rebecca Lewis (MSU, graduate student)
 - Debra Richman (MSU, graduate student)
 - Benjamin Crider (postdoctoral researcher → MissSU Assistant Professor)
 - Mallory Smith (MSU, postdoctoral researcher)

- **Peer-reviewed papers**
Significant laboratory engagement by supported graduate students

- **Rebecca Lewis**
 - 3-month placement at Los Alamos National Laboratory in 2017.
 - Performed work with neutron science experimenters and theorists at LANL including A. Couture and T. Kawano
 - Manuscript in preparation
 - Completed thesis experiment in Fall 2017.
 - Similar analysis technique will be applied to infer numerous neutron capture cross sections in neutron-rich nuclei.
 - Analysis ongoing. Expect neutron-capture cross sections on seven nuclei.
Significant laboratory engagement by supported graduate students

- **Debra Richman**
 - Permanently placed at Los Alamos National Laboratory working within the P-27 group with A. Couture and S. Mosby.
 - Performing analysis to extract neutron capture cross section of 59Fe, a key reaction rate in the astrophysical s-process.
 - Analysis in progress
 - First results presented at Nuclear Astrophysics winter school Russbach 2017
Scientific program focused on rapid-neutron capture process, slow neutron capture process, and stewardship science.

- Inferring neutron-capture cross sections on short-lived nuclei receiving strong support from NSCL Program Advisory Committee.
- Inferring neutron-capture rates in neutron-rich Fe-Cu isotopes, near ^{95}Sr, and Kr.

Approved

- A. Spyrou (MSU): Study of Kr isotopes for astrophysical applications.
- N. Scielzo (LLNL): Determination of the ^{92}Sr neutron-capture cross section and fission product burn up. – scheduled summer 2018

Completed

- S. Liddick (MSU): New technique for neutron capture cross section measurements on short-lived nuclei
- A. Spyrou (MSU): Constraints on nucleosynthesis in the iron region
- A. Spyrou (MSU) / S. Liddick (MSU): Constraining supernova models with SuN
Nuclear level densities and γ-ray strength functions are the dominate uncertainties in (n,γ) calculations.

Hauser – Feshbach

- **Nuclear Level Density**
 Constant T+Fermi gas, back-shifted Fermi gas, superfluid, microscopic

- **γ-ray strength function**
 Generalized Lorentzian, Brink-Axel, various tables

- **Optical model potential**
 Phenomenological, Semi-microscopic

Examples

- **95$\text{Sr}(n,\gamma)96\text{Sr}**

Graphs

- Level density
- γ-strength function
- Cross section (b) vs. Energy (MeV)

NSCL

TALYS

SSAP 2018
Extrapolation of nuclear level densities and γ-ray strength functions to exotic nuclei are uncertain.

γ-ray strength functions
- Unexpected structural features.

Level densities
- What is N,Z dependence of a?

(n,γ) uncertainties impact the rapid-neutron capture process for heavy element creation

Monte-Carlo variations of (n,γ) rates within a factor 100 – 10 – 2 (light – darker – dark bands)
Using beta decay total absorption spectroscopy to infer neutron capture cross sections

- Measure beta decay of nucleus.
 - Extract level densities and gamma-ray strength function
- Need total excitation energy of the daughter isotope.
 - Can’t use beta-decay electron (three body process)
- Instead, measure total emitted photon energy.

- Require high detection efficiency.
- Extract nuclear level density and γ-ray strength function.
- Insert both quantities into a statistical reaction model to constrain (n,γ) rate.
Sensitive \((n,\gamma)\) rates in the neutron-rich Ni region and enabling systematic studies

- Inferred neutron capture rates of \(^{68,69}\text{Ni}\) and \(^{73}\text{Zn}\) have already been performed.
- Strong local impact on astrophysical abundance predictions.
- Extract neutron capture rates of \(^{69}\text{Co},\,^{70,71,72}\text{Ni},\,^{73,74}\text{Cu},\,^{76}\text{Zn}\).
- Covers a number of high sensitivity reactions.
- Provides systematics across a chain of five Ni isotopes.

Determination of beta-decay strength distributions and investigation of nuclear structure from the same data set.

- All delivered isotopes will be amenable to total absorption spectroscopy studies to infer beta-decay strengths.
- **Accurate** $<E_\beta>$ and $<E_\gamma>$ determination.
- Nuclear structure studies also possible based on total absorption spectroscopy and knowledge of individual γ rays.
Neutron capture needs for diagnostics: 95Zr

- 95Zr can be used as a yield indicator.
- However, 95Sr is short lived and can’t be made into a target.
Diagnostics: 95Zr

- Collaboration initiated with N. Scielzo (Lawrence Livermore National Laboratory) to study nuclei in the 95Zr reaction network.
- Approved proposal for experimental beam time at NSCL to study the neutron capture of 92Sr through the beta decay of 93Rb.
- Requires a moving tape collector coupled with the total absorption spectrometer which has been completed and successfully commissioned Dec. 2017.
- Tentatively scheduled for summer 2018.
- Demonstrating capability to infer neutron capture rates on short-lived fission products.
Conclusions

• Application of technique to infer neutron capture cross sections on short-lived neutron-rich nuclei ongoing.
• Applicable to studies of rapid-neutron capture process, slow-neutron capture process, and stewardship science.
• Experiment to explore neutron capture cross section in the neutron-rich Fe-Cu region was completed in 2017.
 – Extraction of seven neutron-capture cross sections expected.
 – Beta-decay feeding strength determinations enabled.
 – Nuclear structure studies possible.
• Experiment to look at neutron capture for stewardship science applications scheduled for summer 2018.
 – Hardware has been completed and commissioned.
• Funding supports two graduate students and one postdoctoral researcher strongly connected to the national laboratories.
Thanks

<table>
<thead>
<tr>
<th>Michigan State University</th>
<th>University of Oslo</th>
<th>LLNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Spyrou</td>
<td>A.C. Larsen</td>
<td>D.L. Bluel</td>
</tr>
<tr>
<td>S.N. Liddick</td>
<td>M. Guttormsen</td>
<td>N. Scielzo</td>
</tr>
<tr>
<td>B.P. Crider</td>
<td>L. Crespo Campo</td>
<td></td>
</tr>
<tr>
<td>K. Childers</td>
<td>S. Siem</td>
<td></td>
</tr>
<tr>
<td>A.C. Dombos</td>
<td>T. Renstrøm</td>
<td></td>
</tr>
<tr>
<td>R. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Naqvi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.J. Prokop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.J. Quinn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Rodriguez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.S. Sumithrarachchi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.G.T. Zegers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Michigan University</td>
<td></td>
<td>LANL</td>
</tr>
<tr>
<td>G. Perdikakis</td>
<td></td>
<td>A. Couture</td>
</tr>
<tr>
<td>S. Nikas</td>
<td></td>
<td>S. Mosby</td>
</tr>
<tr>
<td>Notre Dame</td>
<td>A. Simon</td>
<td>M. Mumpower</td>
</tr>
<tr>
<td></td>
<td>R. Surman</td>
<td></td>
</tr>
</tbody>
</table>
Questions?