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Test section schematic

● Experimental parameters
● Mach number M
● Atwood number A

● Dimensionless time t

● Two imaging planes
Atmospheric air, r
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A wee image sequence

Planar (q = 0) vs. oblique (q = 20°) shock, 
M = 2, A = 0.6

Visualization: 
planar laser-induced fluorescence in acetone 

tagging SF
6
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Historical digression

● Kolmogorov 41 5/3 law

E(k)=C ε2/3 k−5/3

Wavenumber 
In Fourier space

Energy dissipation rate
Energy spectrum of 
turbulent velocity field

● True origin of 5/3 law: Kolmogorov                 
and Obukhov, 1962

● The real Kolmogorov 41 law

⟨ [δu(r )]n⟩=Cnεn /3 rn /3

δu(r )=u(x)−u(x+r)

nth order velocity 
structure function 

(n = 2 ~ kinetic energy) 2/3 law 
(n = 2)



  

When are the 2/3 law and 
5/3 law equivalent?

● Locally isotropic turbulence

● Injection scale L  
● Kolmogorov microscale h  0
● (less restrictive formulation – for 

any locally isotropic turbulence 
where velocity second-order 
structure functions scale as r2/3)

(Monin  & Yaglom, Statistical 
Hydromechanics Vol. 2)



  

Spectra and structure functions 
for passive scalars

Equation 22.12, Monin & Yaglom, Vol. 2

● Corrsin – spectrum of temperature fluctuations 
in isotropic, etc. turbulent flow

 
● Can be generalized to any diffusive passive 

scalar and even to reacting component
● Can be expressed in terms of structure function 

(caveats from previous slide apply) 

Dθθ(r )=Cθ N̄ ε−1 /3 r2 /3 Also too 
2/3 law 

ψ(k x)=Cθ ⟨ϵ⟩
−1/3⟨ξ ⟩k x

−5 /3



  

Plot of                                     I 2(r)=⟨ [ I (x)−I (x+r )]2⟩
(second-order structure function of fluorescence intensity, vertical plane)



  

Plot of                                     I 2(r)=⟨ [ I (x)−I (x+r )]2⟩
(second-order structure function of fluorescence intensity, vertical plane)



  

Intensity histogram evolution

● M = 1.7, vertical 
plane

● Early-time 
fluorescence 
intensity distribution 
– bimodal (bright 
column material, 
dark air)

● At late times, bright 
peak fades due to 
mixing



  

Bimodality criterion

BC=
m3
2+1

m4+3
(n−1)2

(n−2)(n−3)

● Proposed by Warren Sarle

● n – distribution size

● m
3
 – skewness (3rd moment)

● m
4
 – excess kurtosis (4th moment)

● For a uniform distribution, BC = 5/9

● Higher values suggest bimodality, lower - unimodality



  

Bimodality criterion (cont.)



Summary

● Shock-driven mixing flow manifests scalar 
scaling consistent with classical turbulence 
theory predictions

● Emergence of 2/3 power-law scaling in terms of 
dimensionless time t is…
● Accelerated for oblique shock (compared to planar)
● Accelerated by increased Atwood number
● Weakly dependent on Mach number
● Consistent in time with mixing transition based on 

histogram data
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