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Major Updates 

• PI moved from Texas A&M University to Georgia Tech in July 2014 

• Facility moved along with the PI to the new place and it is now operational. 

• 2 PhDs and 1 MS students graduated from the group last year 

• Manuscript in Review/Preparation—3 (1 JFM, 2 PoF) 

• Collaboration with LANL and LLNL 

• Thomas Finn (MS student) worked with Dr. Oleg Schilling 

• Bhanesh Akula (PhD student) worked closely with Dr. Malcolm Andrews 

• Mark Mikhaeil (PhD Student) will be spending summer at LANL with Dr. 
Nick Denissen 

 

 



Rayleigh-Taylor Instability 

Interface is unstable if:  0<∇•∇ ρp

Baroclinic  generation of vorticity: 

ρ
ρ

∇×∇p2
1

Main non-dimensional number: Atwood#: 𝐴𝐴𝑡𝑡 = 𝜌𝜌1− 𝜌𝜌2
𝜌𝜌1+ 𝜌𝜌2

 

• Those accompanied by changes in composition, density, enthalpy, pressure, etc (e.g 
combustion, detonation, supernova) 

• Mixing of fluids of different densities, where the mixing has a large influence on the velocity 
field (e.g, thermal convection, Rayleigh-Taylor Instability) 

• Mixing of passive scalars (non-reacting species which produce no density changes and do 
not affect the dynamics) 
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Reynolds number, 𝑅𝑅𝑅𝑅𝑣𝑣𝑣 =   ℎ𝑠𝑠+ ℎ𝑏𝑏  𝑣𝑣𝑣
𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

 



Why do we care? 
Fundamental fluid mechanics and low-energy-density applications 

•  Ocean mixed layer and stratified turbulence 

•  Effluent discharge into rivers and estuaries 

• Atomization of droplets and sprays, Supersonic combustion 

•  Volcanic Eruptions (Plume Dynamics) 

High-energy-density (extreme) applications 

• Inertial Confinement Fusion (implosion, burning of DT fuel) 

• Supernovae (explosion, thermonuclear flames) 

• Interstellar turbulence (molecular clouds) 

capsule 

Beams 
Inertial confinement fusion 4 

Turbulent Convection—Solar Granules  
Ahlers Physics 2, 74, 2009 

Simulations of Solar convection 
Cattaneo et al, U Chicago, 2002 



 RT and Shear Measurements at low and High Atwood number 
• Effect of shear on RT mix development 
• Understand the mixing transition, if any 
• Velocity statistics 
• Density statistics 
 

 Implementation of simultaneous density-velocity measurement system to obtain 
density-velocity statistics. 

 
 Provide benchmark data for verification of turbulence models  
 
 Understanding the nature of turbulence in multi-material density stratified flows. 
 
 How do the frequencies and amplitudes of perturbations in the initial conditions 

impact the evolving morphology of the flow and subsequent mixing? 
 

 
   

Project Scope 

Vision: “Putting DESIGN into Variable-Density Turbulence” 



Challenges of variable density turbulence in turbulence modeling 
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Reynolds Averaged Mean Momentum using the Boussinesq approximation (de-couple 
density and velocity) (Wolfgang & Rodi 1993), 

For variable density turbulence, averaging of density coupled terms, results in 
correlations with density fluctuations (Chassaing et al. 2002) 

Introduction of density-velocity cross-correlations (turbulent mass flux) is a  
characteristic of variable density turbulence, terms need closure 
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• Convective Setup 
– Collection times up to 75 s 
– 𝐴𝐴𝑡𝑡 up to 0.75 
– 𝑈𝑈 up to 9 m/s 
– Multi-layer 

• Diagnostic Techniques 
– Visualization (ethylene glycol)  
– 2D-PIV (glycerin) 
– Hot Wire Anemometry 

• Novel Density Probe directly measures 
fluid composition 

 

Air U = 0.65 m/s 

Air + He  U = 0.65 m/s 

35 cm 

PIV 

Experimental Setup-Gas Tunnel 

10’ 

6’
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Results: Atwood 0.75 Visualization experiments 

At = 0.75; U = 3.0 m/s 

He  

Air + 
Fog 

2.5 m 

0 

𝜶𝜶𝒃𝒃 𝜶𝜶𝒔𝒔 
𝜶𝜶𝒔𝒔
𝜶𝜶𝒃𝒃

 

0.040 0.076 1.90 

• Reported asymmetry (height ratio) close to the empirical correlation of Dimonte et al. (2000) 

2
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X = 240 cm 

• Dendrite like structures are observed on spike 
• Thinner spike and wider bubbles are observed 

X = 150 cm 

0.64  m
 

He  

Air + Fog 

~1  m 

Results: Atwood 0.75 Planar Mie-Scattering Images 

Ramaprabhu et al., 
Phys Fluids 2012, 
(late-time 
dynamics of the 
single-mode RTI 

Burton., Phys 
Fluids 2011, 
“ultrahigh 
Atwood number 
RTI dynamics 
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Velocity Statistics 

• 𝑢𝑢𝑢, 𝑣𝑣𝑢 Gaussian shaped profile across the mix layer  
• The peak value location shifts towards the bottom side of the mix 
• The slope of the line is proportional to growth rate constant α 

𝑅𝑅𝑅𝑅 = 8100 𝑅𝑅𝑅𝑅 = 176 𝑅𝑅𝑅𝑅 = 3950 
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Self Similarity at Late Times 

𝑣𝑣∞ = 0.7
𝐴𝐴𝑡𝑡𝑔𝑔ℎ𝑥𝑥

2  Terminal bubble velocity 

𝑅𝑅𝑅𝑅 =
ℎ𝑠𝑠 + ℎ𝑏𝑏 𝑣𝑣𝑣

𝜈𝜈𝑚𝑚𝑚𝑚𝑥𝑥
 Reynolds number 

• Collapse at late development 
times past 0.45 s 

• 𝑣𝑣′

𝑣𝑣∞
≈ 1.5  

𝑌𝑌
ℎ𝑚𝑚

, Normalized cross-stream position 

𝑌𝑌
ℎ𝑚𝑚

, Normalized cross-stream position 

𝑢𝑢𝑣

𝑣𝑣∞
 

𝑣𝑣𝑣

𝑣𝑣∞
 



• At centerline, two small peaks at edges of 
distribution, flat center distribution 

• Skewed distributions away from the center 
• 𝜃𝜃 close to self-similar at low 𝐴𝐴𝑡𝑡 

 

𝑌𝑌/𝐻𝐻 𝑓𝑓2�  𝐵𝐵0 𝐵𝐵2 𝜃𝜃 
0.42 0.28 0.067 0.227 0.71 
0.14 0.44 0.077 0.250 0.70 

0 0.50 0.70 0.247 0.71 
-0.14 0.56 0.068 0.240 0.72 
-0.28 0.65 0.051 0.220 0.76 

𝐵𝐵0 =  lim
𝑇𝑇 →∞

1
𝑇𝑇�

𝜌𝜌 − �̅�𝜌 2

Δ𝜌𝜌 2 𝑑𝑑𝑑𝑑
𝑇𝑇

0
 

 𝜃𝜃 = 1 −
𝐵𝐵0
𝐵𝐵2

 

𝑓𝑓𝑣𝑣,1 =  lim
𝑇𝑇 →∞

1
𝑇𝑇
�

𝜌𝜌 − 𝜌𝜌2
Δ𝜌𝜌 𝑑𝑑𝑑𝑑

𝑇𝑇

0
 

𝐵𝐵2 = 𝑓𝑓𝑣𝑣,1𝑓𝑓𝑣𝑣,2 

 𝑓𝑓𝑣𝑣,2 = 1 − 𝑓𝑓𝑣𝑣,1 

𝑅𝑅𝑅𝑅 = 8100 

Density Statistics 



Turbulent kinetic energy in buoyancy-driven turbulence 
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•  Shear production: ~ 

Where Favre averaging is used, 

( Chassaing et al. 2002 ) 

0 

* No turbulent kinetic energy production from mean velocity 
gradients, fundamentally different than other turbulent flows 

•  Buoyancy production: 

Dominant production term, acts only in the direction of the 
acceleration where there is a mean pressure gradient,  i.e.          is 
the dominant turbulent mass flux 

v′′ρ

0, incompressible 
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Statistic 
Based on 𝑣𝑣𝑢 (− Spike, + Bubble) 

Spike Bubble Spike/Bubble 

𝜌𝜌𝑣𝑣𝑣𝑢 -0.18 -0.13 1.384 

• Overall behavior similar to low 𝐴𝐴𝑡𝑡 experiments  
• Asymmetry of average turbulent mass flux (𝜌𝜌𝑣𝑣𝑣𝑢 ) 
• Spike dominates production 
• Differences in behavior between bubble and spike 

 

𝑅𝑅𝑅𝑅 = 8100 𝑘𝑘 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 

𝜌𝜌𝑣𝑣𝑣𝑢 at varying 𝐴𝐴𝑡𝑡 and 𝜏𝜏 𝜌𝜌𝑣𝑣𝑣𝑢 variation between bubble and spike 

Turbulent Mass Flux 
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Conditional Statistics 

Asymmetric growth of the mixing layer results in 𝑣𝑣𝑢  p.d.f.’s which are not mirrored; rather more of the 
heavy fluid is entrained in the rising bubble than light fluid into the falling spike  
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Spectra of Density Measurements 

𝜌𝜌𝑢 and 𝑣𝑣𝑢 Spectra follows 
Kolmogorov inertial 
range 5/3 scaling for 1 
decade. 𝜌𝜌𝑣𝑣𝑣𝑢 does not 
show such scaling. Non-
isotropic turbulence. 



FLAG and BHR 
FLAG Features 
• Arbitrary Lagrangian-Eulerian (ALE), Fully unstructured 
• Mixed material zones, Multi-physics 
BHR Turbulence Closure Model 
• Favre-averaged Navier-Stokes plus transport equations for 𝑅𝑅�𝑚𝑚𝑖𝑖, 𝑎𝑎𝑚𝑚, 
𝑏𝑏, 𝐿𝐿𝑇𝑇, 𝐿𝐿𝐷𝐷 

 
RM Instability Growth 1D Simulations (1024 Zones) 

 Parameter Value 

𝜌𝜌1  3.0 (At = 0.5) or 7.0 𝑘𝑘𝑔𝑔/𝑚𝑚3(At = 0.75) 

𝜌𝜌2  1.0 𝑘𝑘𝑔𝑔/𝑚𝑚3 

𝛾𝛾  1.66 

𝑃𝑃0  791 𝑃𝑃𝑎𝑎 

𝑇𝑇0  300 𝐾𝐾 

Size  2 𝑚𝑚 

Δz  1.95 𝑚𝑚𝑚𝑚 



Turbulence Statistic Profiles 

𝐴𝐴 = 0.5 
 

(Cabot and 
Cook, 2006) 
(Livescu et 
al.,2010) 

𝐴𝐴 = 0.75 



Growth Rate and Energy Balance 

𝐴𝐴 = 0.5 
𝛼𝛼𝑠𝑠
𝛼𝛼𝑏𝑏

= 1.27 

𝐴𝐴 = 0.75 
𝛼𝛼𝑠𝑠
𝛼𝛼𝑏𝑏

= 1.50 

𝛼𝛼𝑏𝑏 = 0.014 ± 0.001 

𝛼𝛼𝑏𝑏 = 0.017 ± 0.002 

𝛼𝛼𝑏𝑏 = 0.029 

𝛼𝛼𝑏𝑏 = 0.028 



• 2 Cases 
• 4.2 million zones 
• Hydrostatic pressure gradient 
• Non-diffuse interface 
• Initial condition based on Gas Tunnel hotwire measurements 
What is the effect of large wavelengths in IC? 

 
 

Case A Modes 1 – 64   

Case B Modes 32 – 64  

3D Simulations 



𝑑𝑑/𝜏𝜏 = 0.767 𝑑𝑑/𝜏𝜏 = 1.726 

A 

B 

Qualitative Results 



A 
𝛼𝛼𝑏𝑏 = 0.04 
𝛼𝛼 = 0.08  

𝐾𝐾𝑧𝑧/𝛥𝛥𝑃𝑃 = 0.35 

B 
𝛼𝛼𝑏𝑏 = 0.04 
𝛼𝛼 = 0.06  

𝐾𝐾𝑧𝑧/𝛥𝛥𝑃𝑃 = 0.35 

Quantitative Results 



Experimental Summary 
• For the first time, simultaneous density/velocity statistics are measured at 𝐴𝐴𝑡𝑡 

= 0.75 in miscible fluids 
• Growth Rate Parameter, 𝛼𝛼𝑏𝑏 ≈ 0.04, Mixing layer grows asymmetrically, with 

ℎ𝑠𝑠
ℎ𝑏𝑏
≈ 1.9 

• Conditional Statistics show contribution of spike ~40% larger than bubble 
Simulation Summary 
• FLAG and BHR can provide insights without high cost of resources 
• Growth rates less than DNS and experimental expectations 
• Density ratio effects on asymmetry: 𝐷𝐷𝛼𝛼 = 0.19 
Future Work 
• Collecting density field with PLIF while simultaneously collecting velocity field 

with PIV 
• IC effects on BHR Results 
• Multi-layer experiments and simulations 

Final Remarks 



Velocity Fluctuation: PDF 

Bubble 
Dominated 

Spike 
Dominated 

Uniform 

𝑣𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥𝑣 = 0.5 𝑣𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥𝑣 = 0.5 

𝑣𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥𝑣 = 0.95 
𝑅𝑅𝑅𝑅 = 8100 



𝑏𝑏𝑚𝑚𝑖𝑖 =  
𝑢𝑢𝑚𝑚 𝑢𝑢𝑖𝑖 

𝑢𝑢𝑘𝑘𝑢𝑢𝑘𝑘
 −  

𝛿𝛿𝑚𝑚𝑖𝑖
3  

• Span-wise fluctuations assumed to be equal to stream-wise fluctuations 
• Dominance of vertical velocity fluctuations in turbulent kinetic energy 
• 𝑏𝑏𝑢𝑢𝑣𝑣 ≈ 0 

𝑅𝑅𝑅𝑅 = 8100 𝑅𝑅𝑅𝑅 = 3950 

𝑌𝑌/ℎ, Normalized cross-stream position 𝑌𝑌/ℎ, Normalized cross-stream position 

PIV Anisotropy 



𝑆𝑆𝑢𝑢𝑣 =
𝑢𝑢𝑣3

𝜎𝜎𝑢𝑢3
 

Skewness 

𝐾𝐾𝑢𝑢𝑣 =
𝑢𝑢𝑣4

𝜎𝜎𝑢𝑢4
 

Kurtosis 

• For Gaussian Distribution 
– S = 0 
– K = 3 

• Gaussian like distribution of 𝑢𝑢𝑢 
across the mix 

• Dramatic skewing of 𝑣𝑣𝑢  
 

𝑅𝑅𝑅𝑅 = 8100 

𝑌𝑌/ℎ, Normalized cross-stream position 

𝑌𝑌/ℎ, Normalized cross-stream position 

Skewness and Kurtosis 
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