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What is this effort about and why is it important?
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Many variable-density flows and their applications are important to the
DOE and DOE/NNSA, to DoD, NASA, geophysics, astrophysms etc.

— ICF, Rayleigh-Taylor flows, baroclinically generated
flows, local stabilization, combustion, flames in
the presence of pressure gradients or shear,
variable-density compressible flows, ...
Predictive simulations of variable-density turbulent
flows remain a challenge in many situations

— Predictive simulations are important if predictions are
required when testing is difficult

Predictive simulations require modeling that can be Rt finering in the Crab nebula
— verified, i.e., that the equations are solved correctly, and
— validated against experiment or exact solutions, i.e., that the right equations
are being solved.
The present effort targets flows with important small-scale variable-
density dynamics
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Project goal — Flow environment and relevant SGS dynamics
» SGS baroclinic torques Eventually
Vp X Vp # 0 04| turbulent at
N high Re
« SGS local stabilization 0.3
and stratification | .
Vp-Vp>0 -
— 10s to 100s of kilo-g 0.1
local Lagrangian
acceleration at high Re 8 h(t)~ 2
« SGS Rayleigh-Taylor 0.1 0.1
instability Vp - Vp < 0\02 .
* Project aims to develop a - - 3
unified predictive framework
. : 5(t)?
for variable-p flows withno 4 g5 ¢
adjustable parameters. P .
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SSAP 2016 Graphic: S. Li & H. Li: RTI simulation (Wikipedia) 3



Acceleration-driven variable-density flow

» High-density fluid between
low-density fluid regions i
— Vertical acceleration field, e.g.,

gravity, and pressure
gradient

37
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— Initial horizontal density gradients

* Flow initialized and driven by -
baroclinic torques: Vp X Vp

- Triply-periodic domain 0 . 2 3 ’

« Solve flow using (pseudo-)spectral direct numerical simulations (DNS)
— Grids of 5123 and 10243 to date

— Remains well-resolved, min{k,..n} > 1.5, by setting viscosity in accord with grid
resolution and density ratio: 1.05 < R = p;/p, < 10 .

— Code verified by Chung & Pullin (2010) and further as part of this work
SSAP 2016 Gat, Matheou, Chung, & PD (2015, 2016) 4
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Shear-layer width, §(t), and Reynolds number, Reg(t)

———————— 10° —
~ 0(t) defined as the region:
001<Y; <099 R65%20 000
F5 ) 1Y
s &
AN &~
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. . 2
10° T
(t+t;)/T
— R=1.05 R=12 — R=2 — R=10
— R=11 — R=1.4 R=5
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X, for3=1/4, R=5.0
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Flow evolution — 2D slice

Xy IOF 8=1/2, R=5.0
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Convection velocity W,

(empirical relation):
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Shear-layer mixed-fluid composition

« Convection-frame apparent velocities dictate entrainment ratio (Dimotakis 1986)
Xo(p) W — W, B 1 D — po
EU — — — > X p—
X.1(p)  W.—W, 1(p)

_ ( _ _Ev_‘|‘1_p1f;02
 Inaccord with dominant measured shear-layer mixed-fluid mole fraction

PDF forR=1.4 att/7=1.63 PDF forR=2 att/m=3.29
DPDF of all fluid

in mixing region
— X1 (p)

in mixing region

| 10 —Xi1(p)
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IDPDF of all fluid
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Diffusive regime Turbulent regime
SSAP 2016 Gat, Matheou, Chung, & PD (2015, 2016) 7
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Spectra: specific kinetic-energy (u2) and kinetic-energy (pu?)
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Flames with lateral shear

: : : : .. ‘ v
« Configuration with “active” baroclinic torque Ve o
 Linear stability analysis predicts new phenomena
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New DNS zero-Mach code — Inflow/outflow BCs
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High-order finite-difference DNS code for zero-Mach variable-p flow

Inflow/outflow control using weak (penalty-type) boundary conditions
(Nordstrom et al. 2007) Flame

D,u = % [—d.p + Pro, - 1] | H (L — g)®e,

which have the bounded norm

2u- HDeu = Deflu?lly = X+ AX+ 0(3x-w) " &
with %
X = (un» U, p, Pr 0puy, Pr atut) No shear .- ~

Velocity
Flame ———,

v

Simulations under way

Grid: 128 x 256 x 128 \N\‘
128 processors

1-step combustion Inflow ‘P
p=28 \rx

an = 0.75
qg =10 Shear r\
Velocity

Pantano (in progress) 10



Unphysical scalar excursions in large-eddy simulation (LES)
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 For passive scalars, the range of values of scalar fields in turbulent flows
IS bounded by their boundary values

— Maximum Principle of the Laplace operator of the RHS of the scalar-
transport equation

% =DV?Z
Dt
- Boundedness of passive-scalar values extends to filtered scalar fields in
large-eddy simulation
0.7 + 0y - (WZ) = 0y * Osos + DV2Z
— Subgrid-scale (SGS) model should ensure that flow scales remain
sufficiently resolved and bounded on the computational grid

— Presently, assume that the SGS model is purely dissipative, SGS model with
no backscatter for simplicity, however the presence of backscatters would
not change the arguments

— Scalar boundedness is both a global constraint (violations easy to
diagnose) but also for excursions within global bounds (more-difficult to
diagnose)
SSAP 2016 Matheou & PD (in progress) 11
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Test flow configuration

« Temporally evolving shear layer
— Simple enough for fundamental study

— Infinite stack of vertical layers
L=4mm

— Alternating initial U = +1 m/s

— Initial freestream passive scalar
values of Z = 0,1

— Initial perturbations designed to
excite 3D flow

« Test flow exhibits characteristics of
more-complex flows

« LES with final Re = 5 x 10°

— Well within fully-developed
turbulence regime

SSAP 2016

Min: 0.000

Matheou & PD (in progress) 12
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Global scalar excursion statistics — QOverview
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« Numerics, SGS model, and grid significantly influence excursions

« Numerical-convection scheme ranking

— Spectral LES for reference
— Flux-limited scheme produces no excursions (as expected), but at the expense of

numerical dissipation (overestimates mixing)

Maximum excursion Volume fraction > 2% Volume fraction > 10%
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« Unphysical global excursions
from dispersive errors of the
numerical convection scheme

« Different behavior from
continuous derivatives

* (Smaller) errors from spectral
schemes because of some
aliasing (Gibbs oscillations)

« Easy to diagnose
« Unphysical scalar excursions
can also be local/internal
« Do not cross global bounds

» Occur throughout the domain
(not shown)

« More-difficult to diagnose
* Both types must be mitigated if

LES is to inform/drive physics-
based SGS models

SSAP 2016

t=0

y=0

S

Scalar excursions — Not well-correlated with scalar gradients
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Matheou & PD (in progress) 14



Flux limiters — Scalars (passive) in non-reacting flow
2
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: f; s = min | = 1,1

Linear scaling limiter
g M; — Y

i-1 i i+l i+2

. _ _ Zhang & Shu (2010, 2011,2013; JCP)
Experiments: Slessor, Bond, & Dimotakis (1998, JFM) Subbareddy et al. (2014, AIAA Paper)

N, =0.76
He = 0.16
Ar® = 0.08
N, =0.76
He = 0.16
Ar® = 0.08

4th-order KEC fluxes

Linear scaling limiter

Contours of Ar® Mass Fraction

SSAP 2016 Kartha, Subbarreddy, GC, & PD (in progress) 15
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Flux limiters — Scalars (active) in reacting flow
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H, = 0.93%, NO = 0.14%, Uj

Ar = 8.00%, He = 15.07%,
Fy = 8.00%, Ny = 76.0%),
He = 16.0%.

Uy

10 species: N,, H,, F,, HF,
NO, H, F, NOF, Ar, He

Hypergolic reaction system:
NO + F, 2 NOF + F
H,+F 2 HF+H
F,+H 2 HF+F

Limiter adds dissipation
where flow s reacting Linear scaling limiter

SSAP 2016 Kartha, Subbarreddy, GC, & PD (in progress) 16
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Other and related work — Not shown

AR,
« Exploring extension to stretched-vortex model (SVM) for variable-p
» Variable-p turbulence spectral closure schemes for SGS modeling
* Improvement in time-stepping accuracy for variable-p flow simulations

« Shocks in complex-EQOS fluids
— Extension to non-conservative systems and Riemann problems
— Example: Shocks in van der Waals gas
« Simulations of jet-injection to supersonic cross-flow
— Geometrical-optics simulations of correlation-image veIommetry for code

validation by comparison with experiment 10*
- Spectral code for (hoped-for) 40962 runs s096 \ 1
— Good scaling on Mira (ALCF, Argonne) PO R

— One MPI rank per core, single-thread runs
— Proving ground with good scale separation 3
for SGS model guidance, development, validation 1"
Data-storage server development
— Computing and data storage pacing items Lot

10! 107 10° 10* 10° 108
SSAP 2016 N 17
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Summary & conclusions

New results/physics from spectral DNS of zero-Mach variable-p flow
— Larger data sets (future) to (first) inform and (then) test SGS models

Numerical-model (dispersion) errors in scalar transport
— Must be addressed for finite-difference LES to drive SGS models correctly
— Active scalars pose considerably greater challenges
— Preliminary mitigation measures

Variable-p flows in premixed flames
— Lateral shear and pressure gradients
— New linear stability analysis reveals rich behavior
— New code to extend study to non-linear regime

Shocks in complex-EQOS fluids(not shown)

Variable-p modeling (not shown)
— Turbulence closure, extending direct-interaction approximation

New codes in support of this effort:
— Spectral: good scaling demonstrated on 1/3 of Mira for future runs
— Finite-difference: M = 0 with inflow/outflow BCs

18
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Thank you
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