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Background / Intro
Google Platforms
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B4: Google's Software
Defined WAN
(circa 2011)

“B4: Experience with a Globally-Deployed Software 
Defined WAN”, SIGCOMM’13
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon 
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, 
Junlan Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen 
Stuart and Amin Vahdat
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Summary
● System architecture refresher
● Packet flood failure event
● Failure analysis and lesson learned
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B4 Network Technology
Google Platforms
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● Didn’t need all features:
○ Large tables
○ Big buffers
○ Protocols

● Built from merchant silicon
○ 100s of ports of 

nonblocking 10GE
● OpenFlow support
● Open source routing stacks for 

BGP, ISIS
● Multiple chassis per site

○ Fault tolerance
○ Scale to multiple Tbps

Building a Global Network
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Data-plane Architecture
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Control-plane Architecture
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B4 Architecture
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Main Traits
OpenFlow-based Hybrid system:
● Distributed routing

○ Run in the NCSes
● Overlay Traffic Engineering

○ non-equal cost multipath
○ QoS
○ rate-limiting at the edge
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A Notable Failure
Google Platforms
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Failure description
1. Human error during site reconfiguration
2. ISIS unstable behavior
3. Increased control packet traffic exercised system 

bottleneck
4. Increased control-plane latency triggered more self-

sustained protocol instability
5. Increased controller load/latency exercised another bug 

in the controller (triggered by an Ops response)
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Lesson Learned

Building on a curing foundation
● Openflow was (is) a moving target
● We built (almost) everything from scratch
● Not enough tools and not mature enough 

Lack of Fate Sharing
● One more network to manage.
● “bad news” or just “no news” (fail open)?
● Mismatch of processing capability
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Lessons Learned (cont)
Exciting system features become management challenges
● High availability built in the system architecture not in 

the individual devices
● Shorter Dev cycle and possibility to experiment w/ new 

features
● Network and Hosts integration

Testing high-scale system stress can be harder in hybrid 
systems
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Thank you!


