
Google Confidential and Proprietary

Building and Deploying SDN

 (lessons learned in the process)

Lorenzo Vicisano
December 2013

Credits: the Google Platforms Networking team.

Google Confidential and Proprietary

Background / Intro
Google Platforms

Google Confidential and Proprietary

B4: Google's Software
Defined WAN
(circa 2011)

“B4: Experience with a Globally-Deployed Software
Defined WAN”, SIGCOMM’13
Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer,
Junlan Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen
Stuart and Amin Vahdat

Google Confidential and Proprietary

Summary
● System architecture refresher
● Packet flood failure event
● Failure analysis and lesson learned

Google Confidential and Proprietary

B4 Network Technology
Google Platforms

Google Confidential and Proprietary

● Didn’t need all features:
○ Large tables
○ Big buffers
○ Protocols

● Built from merchant silicon
○ 100s of ports of

nonblocking 10GE
● OpenFlow support
● Open source routing stacks for

BGP, ISIS
● Multiple chassis per site

○ Fault tolerance
○ Scale to multiple Tbps

Building a Global Network

Google Confidential and Proprietary

Data-plane Architecture

Clusters

Site A

Site B
Site C

OFA
Switch

OFA
Switch

OFA
Switch

OFA
Switch

iBGP

eBGP

Google Confidential and Proprietary

Control-plane Architecture

OFC

OFC

Gateway

Site A
Controllers

NCS 3
NCS 2

NCS 1

Central TE
Server

Quagga Route
Proxy TE Agent Paxos

Google Confidential and Proprietary

B4 Architecture

Google Confidential and Proprietary

Main Traits
OpenFlow-based Hybrid system:
● Distributed routing

○ Run in the NCSes
● Overlay Traffic Engineering

○ non-equal cost multipath
○ QoS
○ rate-limiting at the edge

Google Confidential and Proprietary

A Notable Failure
Google Platforms

Google Confidential and Proprietary

Failure description
1. Human error during site reconfiguration
2. ISIS unstable behavior
3. Increased control packet traffic exercised system

bottleneck
4. Increased control-plane latency triggered more self-

sustained protocol instability
5. Increased controller load/latency exercised another bug

in the controller (triggered by an Ops response)

Google Confidential and Proprietary

Lesson Learned

Building on a curing foundation
● Openflow was (is) a moving target
● We built (almost) everything from scratch
● Not enough tools and not mature enough

Lack of Fate Sharing
● One more network to manage.
● “bad news” or just “no news” (fail open)?
● Mismatch of processing capability

Google Confidential and Proprietary

Lessons Learned (cont)
Exciting system features become management challenges
● High availability built in the system architecture not in

the individual devices
● Shorter Dev cycle and possibility to experiment w/ new

features
● Network and Hosts integration

Testing high-scale system stress can be harder in hybrid
systems

Google Confidential and Proprietary

Thank you!

