PSI SciDAC: Predicting the Performance and Impact of Dynamic PFC Surfaces

Brian D. Wirth *,1,2 , on behalf of

Institution	Principal Investigator	Additional Personnel	T (1 · · · · · · · · · · · · · · · · · ·
ANL	Barry Smith	Shashi Aithal	In partnership with:
	(FASTMath)		
GA/DIII-D	Phil Snyder	Rui Ding, Jerome Guterl, Orso Meneghini	
LANL	Enrique Martinez	Sham Bhat (FASTMath), Nithin Mathew, Danny Perez	
LLNL	Ilon Joseph	Mikhail Dorf, Milo Dorr, Maxim Umansky	
ORNL*	Brian Wirth*	David Bernholdt (RAPIDS), John Canik, Philip Fackler,	
		David Green, James Kress (RAPIDS), David Pugmire	7RAPIDS
		(FASTMath), Phil Roth**, Pablo Seleson, Clayton Webster	
PNNL	Wahyu Setyawan	Rick Kurtz, Giridhar Nandipati, Ken Roche	
SNL	Habib Najm	Mary Alice Cusentino, Khachik Sargsyan (FASTMath),	
	(FASTMath)	Aidan Thompson, Mitch Wood	
UCSD	Sergei Krasheninnikov	Russ Doerner, Roman Smirnov	Condia
UIUC	Davide Curreli	Jon Drobny, Rinat Khaziev	Sallula National
UMass-Amherst	Dimitrios Maroudas	Asanka Weerasinghe	
U Missouri	Karl Hammond	Brandon Laufer	Pacific Northwest
RPI	Mark Shephard	Onkar Sahni, Seegyoung Seol, Cameron Smith	
UTK	Brian Wirth*	Zack Bergetrom Sonhie Blondel Dwainavan Dasgunta Ane	
UIIX	Dian with	Lasa David Martin Li Vang Tim Vounkin	Argonne Alamos
		Lasa, Davia iviarin, Er rang, Till Toulkill	

DEPARTMENT OF

UMASS AMHERST

Presented at SciDAC-4 2019 PI Meeting 17 July 2019

National Laboratory

bdwirth@utk.edu

D

TIONAL FUSION FACILITY

TORY

PSI Perspective

- Objective is to develop leadership-class modeling capability across coupled spatial regions:
 - Edge/scrape-off-layer region of the plasma, with sheath effects
- Near surface material response to plasma exhaust, with neutron damage and influenced/coupled to plasma sheath
- Develop capability to understand mixed materials evolution & impact on properties, push towards transient conditions, and to dynamically couple the surface on the plasma boundary

1000x 15kV

- 20 μm -

Introduction to Plasma – Material Interactions*

Strong changes in surface are driven by interactions with plasma

Erosion, gas retention, sub-surface morphology changes, etc.

PSI compromise both material and plasma performance

* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222

PSI Project Approach & Tasks

- Task 1: Multiscale Modeling approach:
- Scale bridging to Xolotl
- Initiate modeling of mixed surface composition (e.g., Be-W + He/H and N-W) effects of interest to ITER
- Transitioning focus to predicting physical properties

Tasks:

- Bridge the scales between atomistic/microstructural and continuum-based PFC simulations to predict evolving PFC surface response (Brian Wirth)

Atomistic modeling of He-H synergies

- MD simulations performed for
 2 nm diameter bubble containing high pressure He (3 He/vac) and random distribution of H (0.5 H/vac) at 1800K
- H is observed to rapidly migrate to bubble periphery and remains 'trapped' at the bubble interface
- Raises question about potential for tritium trapping/inventory
 - artifact of interatomic potential
 - short time MD simulations

* Bergstrom, Cusentino and Wirth, *Fusion Science & Technology* **71** (2016) 122-135.

Hydrogen interactions with He near W surfaces*

H-He interactions parameterized based on DFT and interatomic potential interactions * Becquart and Domain, *Journal of Nuclear Materials* **386-388** (2010) 109.

Yang and Wirth, *Journal of Applied Physics* **123** (2018) 2152104; Yang, Bergstrom and Wirth, *Journal of Applied Physics* **123** (2018) 205108; Yang, Bergstrom and Wirth, *Journal of Nuclear Materials* **512** (2018) 357-370.

Task 1 – Developing machine learning potentials for W-Be

- SNAP potential of W-Be
- Training data includes DFT for W, Be and mixed W-Be configurations
- Reproduces material properties like cohesive energies and elastic constants

Description N_E N_F σ_E σ_F

W-Be:

3946 68040 **3** \cdot **10**⁵ 2 \cdot 10³ Elastic Deform[†] Equation of State[†] 1113 39627 $2 \cdot 10^5$ $4 \cdot 10^4$ DFT-MD[†] 3360 497124 $7 \cdot 10^4$ $6 \cdot 10^2$ Surface Adhesion 381 112527 $2 \cdot 10^4$ $9 \cdot 10^4$ [†] Multiple crystal phases included in this group:

	Implanted Be Percent	Formation Energy (eV)		
Defect type		DFT	SNAP	BOP
[111] Dumbbell	41.2	4.30	3.66	0.67
Substitution	22.2	3.11	3.29	-2.00
Surf. hollow Site	12.3	-1.05	-1.39	-3.52
Tetrahedral inter.	10.4	4.13	4.20	-0.28
[110] Dumbbell	8.4	4.86	4.29	-0.03
Octahedral Inter.	5.3	3.00	5.11	0.34
Surf. Bridge Site	0.03	1.01	0.44	-1.30

- Potential tested for scenarios outside of training data
- SNAP predicts 75 eV Be to implant within 2 nm of surface and reside at <111> dumbbell and substitutional sites or at surface
- DFT formation energies calculated and compared to SNAP
- **Overall SNAP** reproduces DFT values fairly well and is substantial improvement on existing BOP potential

PSI Project Approach & Tasks

Task 2-3: PMI & Boundary Physics Integration – Physical processes, codes and scale integration

Initiating PSI feedback to boundary plasma and modeling of transient events

Tasks:

- Integrate boundary plasma and surface evolution models, specifically investigating effects of plasma sheath and evolving surfaces (John Canik)

- Study the dynamic response of the surface to transient events, and exploring synergistic phenomena between the near-surface plasma and wall response emphasizing dynamic recycling processes (Ilon Joseph and Sergei Krasheninnikov)

Developing an integrated PSI modeling capability

Includes models for

- Background plasma transport (SOLPS)
- Near-surface sheath (hPIC)
- Erosion and transport of wall material (GITR)
- Implantation of ions into the material (F-TRIDYN)
- Dynamics of the subsurface (Xolotl)

 Workflow implemented with one-way coupling from plasma to material modeling steady-state conditions

*Subject of 2018 DOE-FES Theory & Simulation Performance Target: full report can be found at <u>https://science.energy.gov/fes/community-resources/</u>

Edge plasma modeled with fluid (SOLPS-ITER) and *kinetic (hPIC) simulations*

- **SOLPS-ITER** models coupled plasma/neutral transport
 - Classical transport assumed parallel to magnetic field (+kinetic corrections)
 - Ad-hoc transport coefficients in the cross-field direction
- 2D: radial+poloidal
- Monte Carlo code EIRENE simulates neutral transport •

D. Curreli

Comprehensive atomic and PMI models

- **hPIC**: Full-f, full-orbit particle-in-cell code
- Inputs
 - Local plasma parameters near surface from SOLPS
 - Magnetic field strength and angle
- Outputs
 - Ion energy-angle distribution (IEAD) of particles striking the wall

Wall impurity erosion, transport and re-deposition are modeled using Fractal TRIDYN and GITR

Fractal (F)-TRIDYN: Ion-solid interactions calculated using binary collision approximation Version of TRIDYN** that includes effect of surface morphology

Fractal surface models either explicitly or statistically to account for surface roughness on sputtering etc

Input: IEAD; outputs reflection, erosion, implantation rates for mixed surface compositions

*Drobny, J, et al, J. Nucl. Mat. **494** (2017) 278 **Miller, W., Comp. Phys. Comm. **51** (1988) 355

Global Impurity Transport (GITR) code uses trace impurity approximation

Full-orbit Monte Carlo with operators for Lorentz force, Coulomb collisions, diffusion, and atomic physics Background plasma profiles, geometry, sheath and surface characteristics as input (SOLPS, hPIC, F-TRIDYN)

Anomalous perp. Diffusion

Xolotl* models surface evolution

• Solves the Drift-Diffusion-Reaction equations in one or more dimensions

$$\partial_t C_i(z, t) = -\nabla \cdot u_i(z)C_i(z, t) + D_i(T)\nabla^2 C_i(z, t)$$

• 2D/3D implemented

- $Q_i(\overline{C}(z, t)) + \Gamma \cdot \rho_i(z, t)$,
- Tungsten material is represented by the concentration of clusters at each spatial grid point

Interstitials, Vacancies, Helium, Deuterium, and Tritium, and Mixed He-D-T-V clusters

Includes models for bubble bursting and motion of surface

• Parameters for equations obtained from atomistic simulations, geometric considerations

Successfully benchmarked against molecular dynamics simulations

• Open source, available at: https://github.com/ORNL-Fusion/xolotl/

Continuum picture

Code Integration Framework

F-TRIDYN

- IPS HPC interface framework, developed by FES AToM SciDAC used to integrate plasma edge and materials modeling codes
- File-based integration of sequentially run codes for simulating the ITER divertor

SOLPS provides background (edge) plasma conditions to hPIC (sheath effects), which provides incident particle flux to F-TRIDYN (sputtering yields, implantation profiles) & to GITR (impurity transport and redeposition) & Xolotl (sub-surface gas dynamics)

 Recently demonstrated predictions of a 10-second helium plasma discharge & burning plasma operation in ITER & benchmarked against linear plasma device PISCES (shown last year)

Workflow involved performing 25-36 independent, 1-dimensional coupled F-TRIDYN – Xolotl simulations as a function of spatial location to sample varying plasma conditions – using 160-200 nodes on NERSC Edison

Sol-PS provides edge plasma conditions at the divertor

ITER Burning Plasma

SOLPS

- P_{in}=100MW, D plasma + He, Ne, Be (CX-only)
- P_{rad}=73 MW, mainly by Ne, in the divertor

 \rightarrow ~7 MW/m2 at the target

Sol-PS provides edge plasma conditions at the divertor

Predicted plasma profiles are representative of a partially detached divertor

SOLPS

- P_{in}=100MW, D plasma + He, Ne, Be (CX-only)
- P_{rad} =73 MW, mainly by Ne, in the divertor \rightarrow ~7 MWm⁻² at the target
- The calculated plasma profiles are consistent with a partially detached divertor

hPIC calculates the impact energy-angle distributions

<u>hPIC</u>

• 1D3V, Multi-species (D, T, He, Ne), 36 locations

hPIC calculates the impact energy-angle distributions

<u>hPIC</u>

- 1D3V, Multi-species (D, T, He, Ne), 36 locations
- hPIC calculated peak of distribution is consistent with the most probable energy expected from classical sheath theory
- Particles with E_{in} in the high-energy tail, as predicted by hPIC, can contribute to sputtering of W by light species

F-TRIDYN

- A reduced binary collision approximation model calculates the W sputtering & gas implantation source, based on the hPIC input fluxes and
- Based on O(10⁴) combinations of impact species, energy and angle

GITR models W impurity transport in ITER

<u>GITR</u>

- models W migration across the divertor target
 - In 3D, 2.5M particles, $O(10^6)$ time-steps

GITR models W impurity transport in ITER

<u>GITR</u>

- models W migration across the divertor target
 - In 3D, 2.5M particles, O(10⁶) time-steps
- Neon dominates surface sputtering
 - except around strike point

GITR predicts strong local re-deposition, with net deposition near strike point & erosion along the target

- 10⁴ instances of F-TRIDYN each with 10⁵ particles build the reduced model for sputtering and reflection yields
- Simulations of GITR with 2.5x10⁶ particles for 10⁶ time-steps model W migration across the divertor
- W erosion and re-deposition are strongly correlated
 - Due to 93% of prompt and local re- sdeposition
 - Net deposition around the strike point results from transport by local E fields and more effective deposition with lower T_i

Surface erosion predicted by Xolotl resembles that predicted by GITR, mediated by sub-surface gas dynamics

F-TRIDYN / Xolotl

- General characteristic of surface erosion look the same in GITR and Xolotl
- Differences around the strike point arise from trap mutation and surface growth induced by He clusters
- Higher growth in Xolotl around the strike point, caused by trap mutation (T_i~eV, shallow He implantation)
- Surface height in Xolotl resembles that of GITR further along the target, as trap mutation is less likely (Ti~40eV, deep He implantation)

Heat flux increases surface temperature by ~200*K*

<u>Xolotl</u>

- The thermal coupling between locations is small
 - We run multiple, independent 1D locations & temperatures agree well with 2-D calculations
 - This may change in the full power operation of 500 MW
- We predict changes in T_{surf} of up to ~200K
 - No threat of melting or recrystallization (no transients included)
 - It does affect gas dynamics

Temperature at t = 1 s

D & **T** diffuse faster with increasing surface temperature

Xolotl predictions:

- The peak in concentration takes the value expected for T=T_{surf}(t)
- Gases diffuse faster, mainly outgassing
- Results for D follow the trends of T, and thus are not shown here

He pre-exposure provides a barrier to deeper T permeation

- At R-R_{sep}=0.11m, q~3 MW/m²
- The pre-implanted He clusters burst as T_{surf} increases, leaving V-clusters and voids that trap T (D) as well as refill with He
- V and He clusters (which trap T in the near surface) form a permeation barrier and limit the T_{surf} dependence of the nearsurface T concentration (in this T_{surf} and *q* ranges)

Task 3: Dynamics of coupled PSI

- High-fidelity models for both the edge plasma and material PFCs must be coupled to develop predictive capability
 - Perform the first studies of dynamic recycling and material erosion caused by transient events from the SOL plasma to the sheath to the material surface

- Dynamic coupling of plasma and materials models will be used to understand main ion recycling, material erosion, & impurity production
 - Do these interactions cause new types of coupled plasma-wall oscillations and instabilities?
 Will plasma-wall interactions change the character of turbulence near material surfaces?

Uncertainty Quantification for Impurity Migration

[bu

- Bayesian inference of input profiles of plasma density and temperature using processed data from Langmuir probe measurement
- Polynomial chaos (PC) representation of Bayesian posterior probability density functions, augmented with the intrinsic stochasticity of the input profiles
- Propagation of PC through GITR using regression to build GITR output PC expansions
- Variance decomposition of output PCs and attribution of uncertainties

uncertain model fits

Input profiles: processed data and

Bayesian inference, PC representation, propagation and variance decomposition employed UQTk (<u>www.sandia.gov/uqtoolkit</u>), an uncertainty quantification library supported by FASTMath SciDAC Institute.

Anisotropic mesh development for hPIC & GITR

hPIC meshing is driven by three use cases

- 1D radial
- 1D toroidal/poloidal
- 2D SOL

Developed anisotropic boundary layer (BL) mesh capability for hPIC in the following form

- One-sided BL
- Two-sided BL
- Multi-block 2D BL

Mesh is represented in an implicit/logical form and mesh operations are supported using interfaces (APIs). Preliminary integration performed at the kernel level (e.g., charge density). Parallelism is under discussion.

See talk by M. Shephard

Two-sided BL mesh example

Summary & Future Efforts

• Strong interactions within team & with SciDAC Institutes – involving performance/ optimization of Xolotl (RAPIDS), strong engagement of PETSc team for solver optimization (FASTMath), engagement on visualization (RAPIDS) and UQ/experimental validation (FASTMath)

• Significant ongoing effort to utilize IPS (ATOMS) for coupling boundary plasma & surface evolution codes to predict tungsten divertor performance in ITER for He discharges (not shown) and burning D-T plasma conditions (ongoing)

• Substantial effort and opportunity to improve individual code performance (e.g., Xolotl, KSOME, hPIC, GITR) and code integration

• Efforts underway to model dynamic PSIs (e.g., feedback of the surface on boundary plasma physics) and develop capability to assess transient (ELM) effects

• Successful completion of the project (2022) will provide simulation tools to evaluate tungsten-based plasma facing divertor component performance and feedback of surface/plasma boundary on the burning plasma