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PSI Perspective 
• Objective is to develop leadership-class 
modeling capability across coupled spatial 
regions:
  - Edge/scrape-off-layer region of the 
    plasma, with sheath effects 

- Near surface material response to plasma   
     exhaust, with neutron damage and
     influenced/coupled to plasma sheath 

 • Develop capability to understand mixed 
materials evolution & impact on properties, 
push towards transient conditions, and to 
dynamically couple the surface on the plasma 
boundary
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Introduction to Plasma – Material Interactions*
Strong	changes	in	surface	are	driven	by	
interactions	with	plasma	

Erosion,	gas	retention,	sub-surface	
morphology	changes,	etc.	
PSI	compromise	both	material	and	
plasma	performance	

* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222



PSI Project Approach & Tasks 

Tasks:	
	-	Bridge	the	scales	between	atomistic/microstructural	and	continuum-based	PFC	
simulations	to	predict	evolving	PFC	surface	response	(Brian	Wirth)	

Task	1:	Multiscale	
Modeling	approach:	
Scale	bridging	to	Xolotl		
	

Initiate	modeling	of	mixed	surface	
composition	(e.g.,	Be-W	+	He/H	
and	N-W)	effects	of	interest	to	
ITER	
	

Transitioning	focus	to	predicting	
physical	properties	



Atomistic modeling of He-H synergies
H	Distribution	for	the	(111)	1800	K	

with	3	He/V	and	0.5	H/V	

Green:	Hydrogen		
Blue:	Helium	
Grey:	Surface	Tungsten	
Magenta:	Adatoms	

0	ps	

100	ps	

1	ns	

•	MD	simulations	performed	for	
2	nm	diameter	bubble	containing	high	
pressure	He	(3	He/vac)	and	random	
distribution	of	H	(0.5	H/vac)	at	1800K	
	
•	H	is	observed	to	rapidly	migrate	to	
bubble	periphery	and	remains	
‘trapped’	at	the	bubble	interface	
	
•	Raises	question	about	potential	for	
tritium	trapping/inventory	
		-	artifact	of	interatomic	potential	
		-	short	time	MD	simulations	
	
	

* Bergstrom, Cusentino and Wirth, Fusion Science & Technology 
71 (2016) 122-135.



Hydrogen interactions with He near W surfaces*

*	

HexHyV 

T5	

T1	

T2	

T4	
T3	

He	
W	

H binding energy to a HeV 
below the W(100)	

1st	Nearest	Neighbor	 2nd	Nearest	Neighbor	

HexHyV2 

* Becquart and Domain, Journal of Nuclear Materials 386-388 (2010) 109. 
  Yang and Wirth, Journal of Applied Physics 123 (2018) 2152104; Yang, Bergstrom and Wirth, Journal of Applied Physics 123 
(2018) 205108;  Yang, Bergstrom and Wirth, Journal of Nuclear Materials 512 (2018) 357-370.

H-He	in	Bulk	W	 H-He	near	W	(110)	surface			

H-He	interactions	parameterized	based	on	DFT	and	interatomic	potential	interactions		



Task 1 ‒ Developing machine learning potentials for W-Be 
•  SNAP potential of W-Be  
•  Training data includes DFT for W, Be 

and mixed W-Be configurations 
•  Reproduces material properties like 

cohesive energies and elastic 
constants 

•  Potential tested for 
scenarios outside of 
training data 

•  SNAP predicts 75 eV Be 
to implant within 2 nm of 
surface and reside at 
<111> dumbbell and 
substitutional sites or at 
surface 

•  DFT formation energies 
calculated and compared 
to SNAP 

•  Overall SNAP 
reproduces DFT values 
fairly well and is 
substantial improvement 
on existing BOP potential 



Task 1 ‒ Utilizing atomistic modeling to predict W properties 
• Molecular-dynamics (MD) simulations with regular He nanobubble 
arrangements to investigate the effects of plasma exposure on the 
elastic modulus (stiffness) of PFC tungsten 

FCC	

BCC	

• Power-law 
modulus-density 
scaling relations 
in PFC tungsten 
throughout the 
range of 
parameters 
examined  
• Stiffness 
reduction of PFC 
tungsten with 
increasing He 
content, with 
further reduction 
with increasing 
nanobubble size	



PSI Project Approach & Tasks 

Tasks:	
	-	Integrate	boundary	plasma	and	surface	evolution	models,	specifically	investigating	effects	
of	plasma	sheath	and	evolving	surfaces	(John	Canik)	
	-	Study	the	dynamic	response	of	the	surface	to	transient	events,	and	exploring	synergistic	
phenomena	between	the	near-surface	plasma	and	wall	response	emphasizing	dynamic	
recycling	processes	(Ilon	Joseph	and	Sergei	Krasheninnikov)	

Task	2-3:	PMI	&	Boundary	Physics	
Integration	–		
Physical	processes,	codes	and	scale	
integration	
	

Initiating	PSI	feedback		to	boundary	
plasma	and	modeling	of	transient	
events	



Developing an integrated PSI modeling capability
Includes	models	for	
-  Background	plasma	transport	(SOLPS)	
-  Near-surface	sheath	(hPIC)	
-  Erosion	and	transport	of	wall	material	(GITR)	
-  Implantation	of	ions	into	the	material	(F-TRIDYN)	
-  Dynamics	of	the	subsurface	(Xolotl)	

•  Workflow	implemented	with	one-way	coupling	from	plasma	to	material	
modeling	steady-state	conditions	

	
*Subject	of	2018	DOE-FES	Theory	&	Simulation	Performance	Target:	full	report	can		

be	found	at	https://science.energy.gov/fes/community-resources/	
	
	
	



Edge plasma modeled with fluid (SOLPS-ITER) and 
kinetic (hPIC) simulations

•  SOLPS-ITER	models	coupled	plasma/neutral	transport	
–  Classical	transport	assumed	parallel	to	magnetic	field	(+kinetic	

corrections)	
–  Ad-hoc	transport	coefficients	in	the	cross-field	direction	

•  2D:	radial+poloidal	
•  Monte	Carlo	code	EIRENE	simulates	neutral	transport	
•  Comprehensive	atomic	and	PMI	models	

•  hPIC: Full-f, full-orbit particle-in-cell code 

•  Inputs 
–  Local	plasma	parameters	near	surface	from	SOLPS	
–  Magnetic	field	strength	and	angle	

•  Outputs 
–  Ion	energy-angle	distribution	(IEAD)	of	particles	striking	the	wall	

IEAD for ITER-like condition

See	poster	by	
D.	Curreli	



Wall impurity erosion, transport and re-deposition are 
modeled using Fractal TRIDYN and GITR

Fractal	(F)-TRIDYN:	Ion-solid	interactions	calculated	using	binary	collision	
approximation	
Version	of	TRIDYN**	that	includes	effect	of	surface	morphology	
Fractal	surface	models	either	explicitly	or	statistically	to	account	for	surface	
roughness	on	sputtering	etc	
Input:	IEAD;	outputs	reflection,	erosion,	implantation	rates	for	mixed	surface	
compositions	

*Drobny, J, et al, J. Nucl. Mat. 494 (2017) 278
**Miller, W., Comp. Phys. Comm. 51 (1988) 355

Global	Impurity	Transport	(GITR)	code	uses	
trace	impurity	approximation	

Full-orbit	Monte	Carlo	with	operators	for	
Lorentz	force,	Coulomb	collisions,	
diffusion,	and	atomic	physics	
Background	plasma	profiles,	geometry,	
sheath	and	surface	characteristics	as	
input	(SOLPS,	hPIC,	F-TRIDYN)	



Xolotl* models surface evolution
•	Solves	the	Drift-Diffusion-Reaction	equations	in	one	or	more	dimensions	
	
	
•	2D/3D	implemented	
	

•	Tungsten	material	is	represented	by	the	concentration	of	clusters	at	each	
spatial	grid	point	

Interstitials,	Vacancies,	Helium,	Deuterium,	and	Tritium,	and	Mixed		
He-D-T-V	clusters	

										Includes	models	for	bubble	bursting	and	motion	of	surface	
•	Parameters	for	equations	obtained	from	atomistic	simulations,	geometric	
considerations	

Successfully	benchmarked	against	molecular	dynamics	simulations	
•	Open	source,	available	at:	https://github.com/ORNL-Fusion/xolotl/	
	

Atomistic	picture	

Continuum	picture	



•	IPS	HPC	interface	framework,	developed	by	FES	AToM	SciDAC	used	to	integrate	plasma	
edge	and	materials	modeling	codes	
	

•	File-based	integration	of	sequentially	run	codes	for	simulating	the	ITER	divertor		

Code Integration Framework 

SOLPS	provides	background	(edge)	plasma	conditions	to	hPIC	(sheath	effects),	which	provides	incident	
particle	flux	to	F-TRIDYN	(sputtering	yields,	implantation	profiles)	&	to	GITR	(impurity	transport	and	re-
deposition)	&	Xolotl	(sub-surface	gas	dynamics)		
– Recently	demonstrated	predictions	of	a	10-second	helium	plasma	discharge	&	burning	plasma	operation	in	
ITER	&	benchmarked	against	linear	plasma	device	PISCES	(shown	last	year)		
	

Workflow	involved	performing	25-36	independent,	1-dimensional	coupled	F-TRIDYN	– Xolotl	simulations	as	a	
function	of	spatial	location	to	sample	varying	plasma	conditions	–	using	160-200	nodes	on	NERSC	Edison	



Sol-PS provides edge plasma conditions at the divertor

SOLPS	
•  Pin=100MW,	D	plasma	+	He,	Ne,	Be	(CX-only)	
•  Prad=73	MW,	mainly	by	Ne,	in	the	divertor		

	 	 	 	 	à	~7	MW/m2	at	the	target	

ITER	Burning	Plasma	



Sol-PS provides edge plasma conditions at the divertor
Predicted	plasma	profiles	are	representative	of	a	partially	detached	divertor		

SOLPS	
•  Pin=100MW,	D	plasma	+	He,	Ne,	Be	(CX-only)	
•  Prad=73	MW,	mainly	by	Ne,	in	the	divertor		

	 	 	 	 	à	~7	MWm-2	at	the	target	
•  The	calculated	plasma	profiles	are	consistent	with	a	

partially	detached	divertor	



hPIC calculates the impact energy-angle distributions

hPIC 
•  1D3V, Multi-species (D, T, He, Ne), 36 locations 



hPIC calculates the impact energy-angle distributions

hPIC 
•  1D3V, Multi-species (D, T, He, Ne), 36 locations 
•  hPIC calculated peak of distribution is consistent with the 

most probable energy expected from classical sheath 
theory 

•  Particles with Ein in the high-energy tail, as predicted by 
hPIC, can contribute to sputtering of W by light species 

F-TRIDYN	
•  A	reduced	binary	collision	approximation	model	calculates	

the	W	sputtering	&	gas	implantation	source,	based	on	the	
hPIC	input	fluxes	and		

•  Based	on	O(104)	combinations	of	impact	species,	energy	
and	angle	



GITR models W impurity transport in ITER 

GITR		

•  models	W	migration	across	the	divertor	target	

-  In	3D,	2.5M	particles,	O(106)	time-steps	

	



GITR models W impurity transport in ITER 

GITR		

•  models	W	migration	across	the	divertor	target	

-  In	3D,	2.5M	particles,	O(106)	time-steps	

	
•  Neon dominates 

surface sputtering 

-  except around 
strike point 



GITR predicts strong local re-deposition, with net 
deposition near strike point & erosion along the target

•  104 instances of F-TRIDYN each with 105 
particles build the reduced model for sputtering 
and reflection yields 

•  Simulations of GITR with 2.5x106 particles for 
106 time-steps model W migration across the 
divertor 

•  W erosion and re-deposition are strongly 
correlated 
-  Due to 93% of prompt and local re- sdeposition 
-  Net deposition around the strike point results from 

transport by local E fields and more effective 
deposition with lower Ti 



Surface erosion predicted by Xolotl resembles that predicted by 
GITR, mediated by sub-surface gas dynamics

F-TRIDYN	/	Xolotl	

•  General	characteristic	of	surface	erosion	look	the	same	in	GITR	and	Xolotl	

•  Differences	around	the	strike	point	arise	from	trap	mutation	and	surface	growth	
induced	by	He	clusters	

•  Higher	growth	in	Xolotl	around	the	
strike	point,	caused	by	trap	mutation	
(Ti~eV,	shallow	He	implantation)		

•  Surface	height	in	Xolotl	resembles	
that	of	GITR	further	along	the	target,	
as	trap	mutation	is	less	likely	
(Ti~40eV,	deep	He	implantation)	



Heat flux increases surface temperature by ~200K

Xolotl	

•  The	thermal	coupling	between	locations	is	small	

-  We	run	multiple,	independent	1D	locations	&	
temperatures	agree	well	with	2-D	calculations	

-  This	may	change	in	the	full	power	operation	of	
500	MW	

•  We	predict	changes	in	Tsurf	of	up	to	~200K		

-  No	threat	of	melting	or	recrystallization	(no	
transients	included)	

-  It	does	affect	gas	dynamics	



D & T diffuse faster with increasing surface temperature

•  The peak in concentration 
takes the value expected 
for T=Tsurf(t) 

•  Gases diffuse faster, 
mainly outgassing 

R-Rsep=0.025m: q~5MW/m2 R-Rsep=0.19m: q~1MW/m2 

•  Results for D follow the 
trends of T, and thus are 
not shown here 

Xolotl predictions: 



He pre-exposure provides a barrier to deeper T permeation 

At R-Rsep=0.11m, 
q~3 MW/m2 

W pre-damaged by He Pristine W substrate 

•  The pre-implanted He clusters 
burst as Tsurf increases, leaving 
V-clusters and voids that trap T 
(D) as well as refill with He 

•  V and He clusters (which trap T 
in the near surface) form a 
permeation barrier and limit the 
Tsurf dependence of the near-
surface T concentration (in this 
Tsurf and q ranges) 



Task 3: Dynamics of coupled PSI 
•  High-fidelity models for both the edge plasma and material PFCs must be coupled to 

develop predictive capability  
–  Perform the first studies of dynamic recycling and material erosion caused by transient 

events from the SOL plasma to the sheath to the material surface  

•  Dynamic coupling of plasma and materials models will be used to understand main ion 
recycling, material erosion, & impurity production 

–  Do these interactions cause new types of coupled plasma-wall oscillations and instabilities? 
Will plasma-wall interactions change the character of turbulence near material surfaces?  

3

Theme 2: fuel recycling and retention in tungsten PFCs

particle & heat fluxes

outgassing neutral flux

plasma
model

wall
model

See	poster	by	
M.	Umansky	



Uncertainty Quantification for Impurity Migration 
•  Bayesian inference of input profiles of plasma density 

and temperature using processed data from Langmuir 
probe measurement 

•  Polynomial chaos (PC) representation of Bayesian 
posterior probability density functions, augmented 
with the intrinsic stochasticity of the input profiles 

•  Propagation of PC through GITR using regression to 
build GITR output PC expansions 

•  Variance decomposition of output PCs and attribution 
of uncertainties  

Bayesian inference, PC representation, propagation and variance 
decomposition employed UQTk (www.sandia.gov/uqtoolkit), an uncertainty 
quantification library supported by FASTMath SciDAC Institute.	

Sensitivity via variance decomposition: 
uncertainty in density profile is the 
main contributor to output variance 

Input profiles: processed data and  
uncertain model fits 

Output profiles from GITR:  
predictive uncertainty decomposition 

See	poster	by	
K.	Sargsyan	



Anisotropic mesh development for hPIC & GITR 

   hPIC meshing is driven by three use cases 
n  1D radial 
n  1D toroidal/poloidal 
n  2D SOL 

   Developed anisotropic boundary layer (BL) 
mesh capability for hPIC in the following forms 
n  One-sided BL 
n  Two-sided BL 
n  Multi-block 2D BL 

   Mesh is represented in an implicit/logical form 
and mesh operations are supported using 
interfaces (APIs). Preliminary integration 
performed at the kernel level (e.g., charge 
density). Parallelism is under discussion. Two-sided	BL	mesh	example	

See	talk	by	
M.	Shephard	



Summary & Future Efforts
•	Strong	interactions	within	team	&	with	SciDAC	Institutes	–	involving	performance/
optimization	of	Xolotl	(RAPIDS),	strong	engagement	of	PETSc	team	for	solver	
optimization	(FASTMath),	engagement	on	visualization	(RAPIDS)	and	UQ/experimental	
validation	(FASTMath)		
	

•	Significant	ongoing	effort	to	utilize	IPS	(ATOMS)	for	coupling	boundary	plasma	&	
surface	evolution	codes	to	predict	tungsten	divertor	performance	in	ITER	for	He	
discharges	(not	shown)	and	burning	D-T	plasma	conditions	(ongoing)	
	

•	Substantial	effort	and	opportunity	to	improve	individual	code	performance	(e.g.,	
Xolotl,	KSOME,	hPIC,	GITR)	and	code	integration	
	

•	Efforts	underway	to	model	dynamic	PSIs	(e.g.,	feedback	of	the	surface	on	boundary	
plasma	physics)	and	develop	capability	to	assess	transient	(ELM)	effects	
	

•	Successful	completion	of	the	project	(2022)	will	provide	simulation	tools	to	
evaluate	tungsten-based	plasma	facing	divertor	component	performance	and	feedback	
of	surface/plasma	boundary	on	the	burning	plasma		


