Discrete Element Model for Sea Ice SciDAC PI Meeting 2019

The DEMSI Team

LANL, SNL, NPS

17th July 2019

DEMSI Team

• Los Alamos National Laboratory

- Adrian Turner (BER PI)
- Andrew Roberts
- Min Wang

• Sandia National Laboratories

- Kara Peterson (ASCR PI)
- Dan Bolintineanu
- Dan Ibanez
- Paul Kuberry

• Naval Postgraduate School

Travis Davis

Discrete Element Model for Sea Ice (DEMSI)

- Develop a discrete element method sea ice model suitable for global climate applications
 - Improved sea ice dynamics fidelity
 - Improved performance on future DOE heterogeneous computing architectures
- Particle method with discrete elements representing regions of sea-ice
 - Explicitly calculate forces between elements
 - Integrate equation of motion for each element

Figure: Hopkins (2006)

Figure: Herman (2012)

Scientific Goals

- Current models are poorly suited to future GPU architectures:
 - Stencil operators have small flop-memory rations memory bandwidth/latency limited
 - Often at limit of strong scaling Not enough work to exploit parallelism of GPU system
- Current models of sea ice generally treat it as a viscous-plastic material
 - Assumes grid cells are large enough that there is an isotropic distribution in each of linear openings (leads) in the ice pack
 - $\bullet\,$ Developed when grid cell size was ${\sim}100 \text{km}$
 - $\bullet\,$ Models now use much higher resolution e.g. ${\sim}6km$
- \bullet Observations suggest viscous-plastic models poor for resolutions $<\sim\!\!10 \rm km$
 - Spatial/temporal deformation scaling, dispersion of buoys
- A discrete element method allows explicit and complex force law Hope to capture anisotropic, heterogeneous and intermittent nature of sea ice deformation
 - Capture explicitly fracture and break up of pack

Project Overview

• DEMSI:

- Circular elements to start (speed)
- Each element represents a region of sea ice, and has its own ice thickness distribution (initial resolution > floe size)
- **Dynamics**: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 - Particle based molecular dynamics code
 - Built in support for DEM methods including history dependent contact models
 - Computationally efficient with massive parallelization
- Thermodynamics: CICE consortium Icepack library
 - State-of-the-art sea-ice thermodynamics package
 - Vertical thermodynamics, salinity, shortwave radiation, snow, melt ponds, ice thickness distribution, BGC

17th July 2019 5 / 21

Contact model

- How should elements interact to represent sea ice physics?
- Ridging
 - Convergence of sea ice converts area to thickness how to manage element distortion? How to add new elements.

Adding new elements

• How to add new elements to the ice pack and maintain pack compactness

Coupling

• How to couple particles to Eulerian mesh conservatively?

• Computational performance

• How to make the model fast enough for global climate applications?

Contact Model

- Determines normal and tangential forces between elements
- These forces (as well as body forces) are integrated to determine velocity velocity Verlet solver
- For sea ice we consider two situations:
 - Elements are bonded together
 - Elements are not bonded together
- Our initial implementation adapts the work of Mark Hopkins for circular elements
 - Also using floe resolving simulations to determine better contact model

Interacting elements in DEM

Contact Model: Bonded elements

- Bonded elements have linear bonds between them
- Each point on bond has viscous-elastic glue
- Relative motion of elements places each point on bond under normal and tangential displacement
 - Elastic and damping forces at each point
 - Mohr-Coulomb fracture law
 - Cracks propagate from bonds ends inwards

Contact Model: Unbonded elements

- Unbonded elements have no strength in tension
- On compression elements must represent ridge formation
 - Element area is converted to thickness
- Initially based on Hopkins ridge model normal friction force term independent of relative element velocity

Computational Performance

- Global climate simulations will be computationally expensive
- DOE next generation computers will have heterogenous architectures
 - Oakridge Summit: IBM's POWER9 CPUs and Nvidia Volta GPUs
 - NERSC Perlmutter: both CPU-only and GPU-accelerated nodes
- Modifying LAMMPS DEM to use Kokkos programming model
 - Allows good performance on CPU and GPU
- Will also investigate if elastic modulus can be reduced without affecting simulation fidelity
 - Will allow longer timesteps

https://github.com/kokkos

Coupling to Atmosphere/Ocean

- DEMSI requires an method for interpolation between Lagrangian particles and Eulerian grids
- Have developed a MLS method for interpolating particle data to a fixed structured grid within DEMSI
- Next steps:
 - Implementing optimization-based strategy to ensure property preservation
 - Exploring possible use of Compadre toolkit

Schematic showing elements on Eulerian grid

- Approximately 4 particles-per-cell, particle resolution increases with grid resolution
- Particles initialized with random perturbation from structured arrangement
- Error in grid solution compared to exact solution, computed for interior nodes

 $f = \sin(\pi x)\sin(\pi y)$

 $f = \sin(2\pi x)\sin(2\pi y)$

Ridging in DEM models

- Convergence of sea ice results in the formation of a pressure ridge
 - Sea ice area is converted to sea ice thickness while mass is conserved
- DEMSI ridging methodology:
 - Friction contact model allows element overlap
 - Elements are decreased in area representing ridging
 - Ice from thin elements is moved to thicker elements

Figure: 1D ridging simulation with MPAS-Seaice. Rightwards wind causes ice pileup.

Figure: Implementation of the Hopkins ridging contact model with 5 category ice thickness distribution and column ridging method.

Element distortion from ridging

- Ridging results in model elements decreasing in area during simulation
- Decreases time step, add artificial strain

Shrinking of element adds strain to the pack

- Investigating a global remapping back to an initial "good" element distribution
- Geometric version implemented and tested
- Later will use the coupling system
- Also investigating local remapping techniques

Particle distribution before remapping

Particle distribution after remapping

(*left*): Elements before frazil formation. (*center*): Frazil formation on Eulerian mesh. (*right*): Elements after frazil added. (*red*): New elements. (*blue*): Existing elements with frazil added.

- Another significant challenge is addition of ice from frazil formation
- Take frazil from underlying Eulerian mesh
 - Add to existing elements
 - Create new elements
- Challenge is how to create the new elements with a tightly packed distribution

Realistic simulations

- Work has begun to perform Arctic basin scale simulations
- Particle distribution initialization, forcing, domain
- Currently integrating previous work

DEMSI Data Fusion

 New data fusion techniques are being developed to evaluate DEMSI and to advance quantifying sea ice model skill and bias.

DEMSI diagnostic	Final Phase 1 Evaluation method and dataset	Duration
Concentration/extent	E NOAA Climate Data Record	1979-
Drift & deformation	E Polar Pathfinder Drift	1978-2015
	L International Arctic Buoy Program	1980-
	L RADARSAT-1 Arctic Ocean deformation	1997-2008
	L Envisat Arctic Ocean deformation	2008-2012
Freeboard	S ICESat	2003-2008
	S ICESat-2	2018-
Draft	E U.S. Navy and Royal Navy	1960-2005
Ice age	<i>E</i> Arctic sea-ice age	1978-2015
Mass balance	L IMB buoys	1993-2017
Ice-ocean flux	L Ocean Flux Buoys	2002-2017
Ice-atmosphere flux	L SHEBA flux tower data	1997-1998

Core observations being used to evaluate DEMSI (upper tier) and its coupling (lower tier) using: E - Eulerian mapping; L - Lagrangian observation emulator; and S - Satellite altimetric emulators.

This project is contributing to the development of

The DEMSI Team (LANL, SNL, NPS)

DEMSI Data Fusion

 Satellite emulators are a key component of our methodology, 'flying' virtual ICESat and ICESat-2 above the model mesh to evaluate DEMSI freeboard.

• We are optimizing the use of a finite number of satellite passes to generate continuous p-values for highly autocorrelated DEMSI output.

The DEMSI Team (LANL, SNL, NPS)

Discrete Element Model for Sea Ice

17th July 2019 19 / 21

Masters Thesis - Travis Davis, Naval Postgraduate School

• Three dimensional finite element model of an individual ridge.

 This research independently corroborates a new theoretical development to be used to simulate macro-porosity of the pack.

Phase 1

• Putting everything together and perform realistic Arctic basin scale simulations

17th

July 2019

21 / 21

• Phase 2

- Coupling DEMSI into E3SM
- Performance optimization
- Machine learning to improve contact model
- Stress state remapping
- Analysis of coupled simulations