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Motivations

EP (Energetic Particle) confinement is a critical issue for self-
heated ignifion experiments such as ITER — ignition requires good
EP confinement

EPs can excite mesoscale EP instabilities => drive large EP
tfransport.

These can degrade overall plasma confinement and threaten the
integrity of the wall and plasma-facing components

EPs => significant fraction of the plasma energy density in ITER. EPs
can influence microturbulence responsible for turbulent transport
of thermal plasmas and macroscopic magnetohydrodynamic
(MHD) modes potentially leading to disruptions

Ilgnition regime plasma confinement with a-particle heating: one
of the most uncertain issues in extrapolafting from existing devices
to ITER.



- Objectives

> To improve physics understanding of EP confinement and EP
interactions with burning thermal plasmas through exa-scale
simulations

> To develop a comprehensive predictive capability for EP
physics

> To deliver an EP module incorporating both first-principles
simulation models and high fidelity reduced fransport models
to the fusion whole device modeling (WDM) project.

« Energetic particle instabilities - V&V challenges

> The EP-driven Alfvén spectrum typically includes many unstable
modes

> The mode that dominates is model dependent and sensitive to
profiles

> A variety of different EP stability models have been developed (see
below)

>  The most important profiles determining AE stability (Nsqgst. Efqst. G-

profile) are not measured directly, but inferred from reconstruction or
modeling

YOURIDGE  Fast jon distribution “sculpted-out” over fime by AE instabilities




ISEP computational models
. GIC

> First-principles, multi-physics, global gyrokinetic particle-in-cell (PIC) model
with applications to microturbulence, meso-scale EP instabilities, MHD
modes, RF (radio-frequency) heating and neoclassical tfransport

> MPI, OpenMP and GPU parallelism, adapted to peta-scale and emerging
exascale platforms

- GYRO
> Comprehensive continuum (Eulerian) electromagnetic global 6f gyrokinetic
model
> Includes full physics features needed to realistically simulate turbulence and

transport in experimental tokamak discharges

-  FAR3D/TAEFL

> High fidelity reduced stability model using Landau-fluid closures to include
resonant drives and Padi approximations to include finite gyro-radius effects

> Time evolution and direct eigen-solver options

-  Collaborating models

> GEM - gyrokinetic 6f PIC; EUTERPE — global, electromagnetic gyrokinetic PIC;
ORB5 - linear/nonlinear gyrokinetic PIC; MEGA - kinetic/MHD hybrid; M3D-K -

YOI RIDGE kinetic/MHD hybrid; NOVA-K — linear hybrid kinetic/MHD
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ISEP Verification/Validation: recent DIII-D case

S. Taimoruzadeh, et al., Nuclar Fusion (2019)
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ISEP Verification/Validation

2012 V&V - growth rates/frequencies 2019 V&V mode structures

D. Spong, et al., Phys. Plasmas (2012) os| oores || co
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Progress on reduced fidelity models for EP
stability and transport is essential for
whole device modeling

* First step: need to rapidly evaluate Alfvén stability and
mode structures

- Perturbative analysis (NOVA-K, AE3D-K)
- Non-perturbative gyrofluid closure models (FAR3D, TGLF-EP)

« Second step: must couple EP stability with energetic
particle transport evaluation

— Critical gradient models (TGLF-EP)
- Resonance-broadened quasilinear (RBQ) model
- Perturbative phase space orbits (Kick model)

- Rapid (GPU-based) fast ion Monte Carlo models with Alfvén
mode structures (future versions of AE3D-K)
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Critical gradient — reduced EP transport model

TGLF-EP+Alpha is the simplest, fastest EP tfransport model

available = extensive validation possible and necessa

/™. | TGLF-EP+Alphais a 1D critical-gradient mode!
aisf B . (CGM) using gyro-fluid stability calculations
o R and a stiff AE-EP transport assumption.

oy transport -
_b_ . ‘\ solution ‘\_Cla'“wal
5 '/ " M Model features:
|
S ofy « Highly reduced = inexpensive

A T * Increasingly automated, minimal

P human judgment required

Stiff fransport forces the gradient o
not (much) exceed a "critical « Fully physics-based! No “fudge factors”

gradient” of AE transport [essentially
the inear stabdity threshold).

or AE inputs from experiment.

Simplifying assumptions (Maxwellian EPs; stiff, local transport; no velocity-space
dependence; etc.) make validation especially necessary to map applicability.
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Critical gradient — reduced EP transport model

Beam-ion fransport well recovered in DIlI-D q,,,,,=1 case
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Critical gradient — reduced EP transport model

Increasing fransport with A DIlI-D q,,,,=2 case has much
stronger AE fransport

unstable region

Experiment
Classical
DB_TGLFEP

transport
solution

dp,/dr (10* N/m’)
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Critical gradient — reduced EP transport model

In ITER, coupled alpha and NBI drive nearly doubles confinement loss from

mid core. Net edge loss is small !
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Critical gradient — reduced EP transport model

In ITER, a tailored cumrent penetration at 7.5 MA can lead to lower EP re-

distribution than the 15 MA base case despite higher g.
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Long time scale nonlinear: Alfvéen instabilities are
often observed to persist over 104 to 107 Alfvén
times (Ry/Vva)

 Observed time scales encompass many

(a) #159243,

linear growth e-foldings (~ 30 t,) ECE oht-24

» Nonlinear effects dominate

Frequency (kHz)

* Intermittency also important

> As fast ion/wave system resolves imbalances < ~ | million t, —

» As changing plasma conditions change the mix of

drive/damping

« Studies of EP induced transport must account for

conditions consistent with long-term sustainment

» Mode structure, equilibrium changes from zonal flows/currents
» Dynamic adjustment in particle and energy flows

¥OoakRinGe > Fast ion distribution function imprinted by AE turbulence history




Long time-scale nonlinear: GTC gyrokinetic model
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Long time scale nonlinear: this example is for
n =0, 4, 8 with all nonlinearities active

T3«
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Long time scale nonlinear: n =0, 4, 8 case
with wavelet spectrogram
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Long time scale nonlinear: n =0, 4 case
with wavelet specirogram
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Long time scale nonlinear:n=0, 2, 3,4, 5
case with wavelet spectrogram




Long time scale nonlinear: energy evolution for
the different toroidal modes shows role of n =0 in
regulating saturation stages
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This includes n =0, 4, and 8, but with the fast ion
nonlinearities turned off => no profile flattening — only
zonal flows/currents. Source instantly fills in losses.
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Long time scale nonlinear: the 2D mode
structure evolves with time:
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Long time scale nonlinear: Diffusion coefficients
xTpa/a2=1x103,n=0,4,8
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Long time scale nonlinear: Diffusion coefficients
xTa/a?=7x10%¢n=0,4,8
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Long time scale nonlinear: Diffusion coefficients
X T, /02=3x10%n=0,4,8
=> “ifnterm'ﬂency effects dominate
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Long time scale nonlinear: Diffusion coefficients
X T /02=3x10%n=0,4,8
* Mode structure changes in time




Long time scale nonlinear: neoclassical flow
damping (Hinfon/Rosenbluth) increases
amplitude and intermittency
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Summary
Verification and Validation

>

ISEP and the previous GSEP projects have developed close
connections with fusion experiments, such as DIII-D =>
successful V&V activities

In addition to the primary ISEP models, we have engaged
with outside EP modeling codes

Recent linear stability verification will be extended o the
nonlinear regime

Long-term nonlinear simulations

YV V VY VY

Multiple AE modes have been followed for 10,000 Alfvén times
Extension to recent DIII-D transport analysis case

Connection with crifical gradient modeling

Source/sink balancing models will be further developed



