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NUCLEI — a national collaboration
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Physics of atomic nuclei

118 chemical elements (94 naturally found on

Earth) Aims:
288 stable (primordial) isotopes Explore limits of nuclear binding
Thousands of short-lived isotopes B ok : :

e o Link nuclei to neutron stars

Understand electroweak reactions
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NUCLEI — connections between ASCR and NP
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NUCLEI and SciDAC Institutes

FASTMath is focused on eight core technology areas
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Sustained impact of optimization for nuclear theory

Scientific Achievement

* Parallel optimization code POUNDERS for optimizing low-energy functional
* Disrupted conventional manual and underoptimized approaches

Math of complex systems: POUNDERS foundation

UNEDF SciDAC-2: UNEDFO
Derivative-free optimization

method developed under UNEDF SciDAC-2: UNEDF1

ASCR th Nuclear energy
- ;:: S sFt):r)f;aa::dORSCR + density optimization. . NUCLEI SciDAC-3: N2LOopt

prex Y . Kortelainen, Lesinski, Nuclear energy density
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Moré, Nazarewicz, optimization: Large NUCLEI SciDAC-4
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Deep learning for nuclear binding energy and radius
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Developed artificial neural networks (ANNs) for extending the application

e Develop ANNs that extend the reach of
high performance computing simulations
of nuclei

e Predict properties of nuclei based on ab
initio structure calculations in achievable
basis spaces

e Produce accurate predictions of nuclear
properties with quantified uncertainties
using fundamental inter-nucleon
interactions

range of the ab initio computations

Demonstrated predictive power of ANNs for converged solutions of weakly

converging simulations of the nuclear radius

Provided a new paradigm for matching deep learning with results from

high performance computing simulations

Number of ANN extrapolants
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G. A. Negoita, et al., Phys. Rev. C 99, 054308 (2019)



Neutron drip line in the calcium region from
Bayesian model averaging
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* Exploit recent discovery of eight new isotopes of the elements phosphorus, sulfur, chlorine, argon,

potassium, scandium, and calcium
* Estimate the boundaries of nuclear existence in the calcium region with a full quantification of
uncertainties, assessing the impact of the experimental discovery on nuclear structure research.

L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, and F. Viens, Phys. Rev. Lett. 122, 062502 (2019)



Scientific discovery through statistics

Objective: Develop statistical tools to provide theoretical error
bars and to assist in scientific discovery

Q° Vi * Adapted Bayesian methods were

o to parameter estimation for
g2 /I : chiral effective field theories.

NO 1 ] * |dentified a model redundancy

caused by too many parameters

Q® Ll I and overfitting. This  was
N unnoticed for over ten years.

/| * Resulted in new improved fits to

o YT experimental data with fewer

parameters
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S. Wesolowski, R.J. Furnstahl, J. Melendez, and Daniel Phillips, J. Phys. G 46, 045102 (2019).



Nuclear pasta: strongest material in the universe

Casey Reed / Penn State University, Wikimedia Commons

Used large scale GPU computing to perform detailed
molecular dynamics simulations of neutron star crust,
including complex nuclear pasta phases

Determined its elastic properties such as sheer modulus
and breaking strain

Found that the very strong breaking strain can support Largest ever simulation of nuclear pasta, containing over
large crust mountains, which on rotating neutron stars can three million protons and neutrons. The colors show
efficiently radiate gravitational waves. These could be "domains" where nuclear pasta is locally ordered.

observed in near future LIGO searches
M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Phys. Rev. Lett. 121, 132701 (2018)



Confronting gravitational waves with modern
nuclear physics constraints

 Studied the impact of phase transitions 2500:.' o : \'\lthphd;n —
on the  gravitational-wave  signal i 1 without phasotr. |
GW170817 2000 *\ — LIGO constraint,
* Constrained the radius of a 1.4 solar-mass N 90% contours
neutron star to be between 8.7-12.6 km .| \ """"" - 50% contours
(10.9-12.0 km) when phase transitions are = \ N
present (not present) \ |

—~  Determined ranges for
LIGO Caltech polarizabilities that will allow to shed light YA
on the existence of phase transitions to  500f %} I .
exotic forms of matter in the core of Y
neutron stars when future neutron-star ‘ : '
merger observations become available
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Tews, Carlson, Gandolfi, and Reddy, Astrophys. J. 860, 149 (2018); Tews, Margueron, and Reddy, Phys. Rev. C 98, 045804 (2018)



Structure of 1%Sn and its neighbors

* Determine the structure of the supposedly doubly magic nucleus 19°Sn consisting of 50 protons and 50

neutrons and its neighbors
* Tying the structure of this heavy nucleus to nuclear interactions that are constrained only in very light nuclei.

 Doubly magic nuclei such as g |- )88
100Sh have a simple structure | %
and are the cornerstones for Lrggg” - 64
entire regions of the nuclear '_6‘ 2 o ;, s 8 538
chart. E,s- D 2t
* Our results confirm that 19Sn is 54 A
doubly magic, and the predicted 5 1
low-lying states of 100.101Sn open & 100G,
the way for shell-model studies 2[
of many more rare isotopes. 1f
* Separation  energies  enter of 2 o0 o 00 o 0.0
models of nucleosynthesis. EOM-.CCSD EOM.CCSD(T) __ LSSM

T. Morris, C. Simonis, R. Stroberg, C. Stumpf et al., Phys. Rev. Lett. 120, 152503 (2018)



Solution of the puzzle of quenched [ decays

Addressed the long-standing puzzle of why computations of B-decay rates in
atomic nuclei are about 25% faster than what’s expected from the B-decay of
the free neutron
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P. Gysbers et al., Nature Physics 15, 428 (2019)



Puzzling sizes of extreme calcium isotopes

e The intricate behavior of charge radii along
the chain of Ca isotopes, including the
unexpectedly large charge radius of neutron-
rich °2Ca, poses a daunting challenge for
nuclear theory.

e The charge radii of proton-rich isotopes
36,37,33C3 are challenging as properties of
these systems are impacted by the interplay
between nuclear superfluidity and weak
binding.

New Measurements #
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Charge radii of calcium isotopes. New data are shown in red
squares and compared with theoretical values.

A.J. Miller et al., Nature Physics (2019)



Quantum computing of an atomic nucleus
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* Perform the first quantum computation of an 1

atomic nucleus
* Learn how to map real-word physics problems
onto existing quantum devices

Collaboration between nuclear physicists (NP) and quantum information scientists (ASCR):
Dumitrescu, McCaskey, Hagen, Jansen, Morris, TP, Pooser, Dean, Lougovski, Phys. Rev. Lett. 120, 210501 (2018)



summary

Year 3 of SciDAC-4 was successful for the NUCLEI collaboration

* Continued productive collaborations between AM/CS and NP

* Addressed exciting science problems



