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Scientific Objectives & Organization of the 
RF-SciDAC Project

● Develop an integrated simulation for quantitative prediction of the antenna 

+ sheath + scrape-off-layer + core plasma system which fully utilizes 

leadership class computing.

● Validate this predictive capability on appropriately diagnosed experiments 

including dedicated RF test stands, linear devices, and existing tokamaks.

● Project organized into 4 thrusts:

○ Thrust 1: RF WDM Components & Thrust Common Efforts (other poster)

○ Thrust 2: RF + Turbulence (this poster)

○ Thrust 3: RF + Equilibrium Transport (this poster)

○ Thrust 4: RF + Impurity Generation (other poster)

● Use these tools to inform design of robust, impurity-mitigating RF heating 

and current drive sources for future fusion devices.
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Thrusts 2&3 : Coupling of RF to turbulent and 
equilibrium timescale transport

Thrust 2 Thrust 3
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Braginskii miniapp based on MFEM tests new fluid 
plasma transport solver
• Physics Model

– Classical parallel transport with cross-field drifts and ad hoc cross-field 
diffusion terms

– Two-fluid model for transport of a single ion species and electrons
– Diffusion model for a single species of neutral atoms

• Computational Model based on MFEM
– Coupled system of non-linear partial differential equations
– Fields discretized using Discontinuous Galerkin Finite Elements of 

arbitrary order
– Time integration using high-order SDIRK methods
– Time step selection using Proportional-Integral-Derivative (PID) 

Controller
– Adaptive mesh refinement based on weighted error estimates of each 

field 
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Equations solved

• Currently neglecting drifts, recombination, ohmic heating
• Density evolution

• Parallel momentum

• Electron and ion energy

• Potential equation, 
derived from vorticity, 
will be solved in future 
version
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Testing high order basis 
functions for anisotropy

• Plasma transport is 
highly anisotropic

• High order basis 
functions tested in 
using MFEM
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Geometry and Unstructured Meshing  

• Geometry
– Tokamak geometries: ITER, DIII-D, Alcator 

C-MOD, NSTX, KSTAR, etc.

– Combined physical and physics entities in 
model to be meshed to support field 
aligned meshing and coupling

– EFIT physics geometry

• Mesh generation (with Simmetrix) 
– Mesh controls to support analysis codes

– Higher order curved mesh adaptation

– General and field aligned meshes

– 2-D and 3-D extruded meshes

– Support for conforming mesh adaptation

Unstructured initial 
and adapted mesh

Extruded field 
aligned mesh
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Geometry and Unstructured Meshing  

• On going meshing activities
– Performing initial tests on realistic 

geometries

– Comparing alternative mesh 
configurations

• Unstructured meshes with general 
mesh gradations

• Unstructured meshes with 
alignment to flux surfaces

• Meshing modified geometries
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SOLT3D is a 3D BOUT++-based generalization
of the highly successful 2D SOLT1  code

• Implements the drift-reduced-ballooning fluid equations, 
including curvature drive, and divertor-plate sheath BC’s 

• Initially using simplified geometries to facilitate 
implementation of the key divertor-plasma physics 

• Have runs with LAPD and tokamak-divertor parameters 

• Will add T
i
, V

IIi
, N

g
 equations

Dynamic equations

Algebraic constraints

Sheath B.C.
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SOLT3D has passed key linear benchmarks

Drift-ballooning benchmarks:
• Local - against analytical theory
• Global - against 2DX1

Conducting-wall-mode benchmarks:
• Local against analytical theory

1D.A. Baver, J.R. Myra, and M.V. 
Umansky, Comp. Phys. Comm. 182, 1610, 
(2011)
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Nonlinear SOLT3D simulations match previous published 
results

1Krasheninnikov et al., J. Plas. Phys. 74, 679 (2008)
2Popovich et al. Phys. Plasmas 17, 10.1063 (2010)  

small blobs - δ<<1: KH mushroom breakup
large blobs - δ>>1: interchange breakup

δ≤1

δ≥1

SOLT3D blob simulations agree with 
previous published results1

SOLT3D simulations of drift plasma 
turbulence for LAPD-like parameters 
agree with previous published results2
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Inclusion of RF effects in the turbulence simulations: 
Ponderomotive force

• The ponderomotive force is, basically, the lo-pass filter of the 
following (which will be taken by Vsim)

• Qualitative understanding from

• First term is gradient of “wave pressure”
– Second term is … well … extra

• Generates parallel forces, FxB drifts and vorticity sources in 
low-frequency (BOUT) equations
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SOL turbulence and transport simulations should 
include the ponderomotive force

• |Amplitude|2 steady-state “pressure” from the RF’s |E|2, |B|2, 
and |JRF|2 energy, as it propagates through the steady-state 
plasma.

• Fast wave, E ~ 5.0x104 V/m --> Like 0.1eV

• Slow wave, E ~ 1.5x105 V/m --> Like 1eV

• If slow waves are present, will they cause density rarefication in 
front of antenna, thus perpetuating the low density that favors 
the slow wave.  (Chicken / Egg problem).
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What is VSim?

• 3D-FDTD-EM-PIC
– Cold plasma fluid algorithm, 

works for ICRH times
– No PIC particles for this!
– Good for edge plasma, not good 

for core absorption

• Import 3D CAD files or generate 
complex geometry
– Include the waveguide feeds
– Includes RF sheath sub-grid 

model at metal surfaces
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• BOUT++ -> VSim
– Density profiles/fields

• At first, data in files, manual runs.
– VSim likes HDF5, BOUT++ likes NetCDF 
– A Python translation code has been written for BOUT++ --> VSim data 

transfer

• VSim -> BOUT++
– Ponderomotive Force

• First, we are testing SOLT3D with analytical model terms that mimic output 
expected from Vsim

• Direct coupling will follow once issues explored with model

Progress has been made on the VSim <--> BOUT++ 
data transfer and workflow
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Inclusion of RF effects in the turbulence simulations: 
RF-sheath boundary conditions in BOUT++ (SOLT3D)

• Want to study effects of boundary conditions resulting from RF 
launching structures on turbulent solutions e.g., from SOLT3D

• Presently available BOUT++ mesh classes do not allow for 
impinging structures

• Spatially dependent boundary conditions on an outer flux 
surface may be adequate

• Use steady solutions of the SOLT3D model implemented in a 
FEM package (presently COMSOL) to determine boundary 
conditions on a flux surface, given those at the material 
surfaces
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COMSOL solution of DRBM equations w. biased
boundaries; w/o & w. indentation - 𝜙 

lineouts

with indentation without indentation
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RF simulations originally motivated by experimental 
measurements of Ē

LH
• New dynamic Stark effect 

spectroscopy measurement 
technique developed to 
measure  magnitude and 
direction of Ē

LH
 on Alcator 

C-Mod1,2 
• Without synthetic 

fluctuations, measurement 
and RF simulation agree for 
magnitude, disagree for 
direction of Ē

LH
• With synthetic fluctuations, 

there could be much better 
agreement between 
measurement and RF 
simulation for direction of 
Ē

LH

1Martin et. al, IAEA2018, 2Martin et. al, NF2019
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E-field polarization can be significantly modified by 
different turbulence parameters

• 2-D cold-plasma full-wave RF simulation with 
synthetic turbulence show significantly 
different behavior as a function of 
fluctuation amplitude (𝑛 ̃/𝑛)  and poloidal 
wavelength (λ

fluct
)

• Example detailed simulation as a function of 
λ

fluct
  is shown on next slide

• Future SCIDAC work will involve 3-D RF 
models and replacing synthetic turbulence 
with a realistic turbulence model such as 
SOLT3D (see this poster) as inputs into this 
full-wave model
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No 
fluctuations

λfluct = 0.25 
cm

λfluct = 0.5 
cm

λfluct = 3 
cm

λfluct = 25 
cm

|E| (V/m)

 

Density 
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