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Outlines: ISEP

• Develop EP integrated simulation: 

ISEP framework 

• Study high priority EP physics issues

• Develop EP modules for fusion WDM

[D. Pace, W. Heidbrink,

M. Van Zeeland, 2015]



SciDAC ISEP: Integrated Simulation of Energetic Particles

• Confinement of energetic particles (EP) is a critical issue for burning plasma experiments

since ignition in ITER relies on self-heating by energetic fusion products (a-particles)

• Plasma confinement properties in the new ignition regime of self-heating by a-particles is

one of the most uncertain issues when extrapolating from existing fusion devices to ITER

• EP turbulence and transport: EP excite meso-scale instabilities and drive large transport,

which can degrades overall plasma confinement and threaten machine integrity

• Interaction between EP and thermal plasmas: EP can strongly influence microturbulence

responsible for turbulent transport of thermal plasmas and macroscopic

magnetohydrodynamic (MHD) instabilities potentially leading to disruptions

• SciDAC ISEP: integrated simulations of EP turbulence by treating relevant physical

processes from micro to macro scales on same footing

►ISEP Center: UCI, GA, PPPL, ORNL, LBNL, LLNL, PU, UCSD



ISEP Objectives

• Study EP physics needed for predictive capability using 1st-principles GTC, GYRO, FAR3D

► EP transport by mesoscale EP turbulence

► EP coupling with microturbulence and macroscopic MHD modes

• Develop integrated simulation for studying EP physics and verifying reduced transport model

► ISEP framework based on GTC

• Develop EP module with predictive capability for WDM

► Reduced EP transport models (CGM, RBQ, kick model, machine learning)

► First-principles ISEP framework

► V&V

• Computational partnership

► Workflow/data management [Klasky]

► Solvers [Falgout]

► Optimization & portability [Williams & Tang]



Highlights on ISEP Progress

• Developed practical reduced models (CGM, RBQ, Kick)           

[1 DPP18 invited talk, 2 IAEA2018 orals]

• Linear Alfven eigenmode (AE) V&V completed

• Progress on AE NL saturation and coupling with 

microturbulence

• GTC optimized on GPU [SC18 workshop oral]

• ADIOS-2 implemented in GTC

[Taimourzadeh et al, NF2019]

Toroidal mode n=4 RSAE in 

DIII-D shot 158243 at 805ms



Integrated Simulation: 1st-principles ISEP Framework

• ISEP framework based on gyrokinetic toroidal code GTC:

✓ SciDAC GPS (01-11), GSEP (08-17), ISEP (17-)

• First-principles, global, integrated simulation capability for 

nonlinear interactions of multiple kinetic-MHD processes

• Current capability in the central version

✓ Global 3D toroidal geometry for tokamak, stellarator, FRC

✓ Microturbulence: 5D gyrokinetic ions & electrons, electromagnetic 

compressible fluctuations, collisionless/collisional tearing modes

✓ MHD and energetic particle (EP): Alfven eigenmodes, kink, resistive 

tearing modes

✓ Neoclassical transport: Fokker-Planck collision operators

✓ Radio frequency (RF) waves: 6D Vlasov ions

• Large user community (>40 users/developers); Broad impacts 

to fusion (12 papers in PRL, Science, Nature Comm.) Z. Lin et al, Science 281, 1835 (1998)

Open source: Phoenix.ps.uci.edu/GTC

DIII-D 

shot #158103 

http://phoenix.ps.uci.edu/GTC


GTC Performance on Summit GPU

• GPU optimization by CAAR project: UCI, PU, ORNL, NVIDIA, IBM 

• GTC speeds up 40x from CPU to GPU on 384 GPUs; speeds up 20x from CPU to GPU 

on 5556 GPUs (1/5 of SUMMIT)

• INCITE: 2% of Summit time

Wall-clock time in GTC 

weak scaling test on Summit

Heterogeneous Programming and Optimization of 

Gyrokinetic Toroidal Code Using Directives, Wenlu 

Zhang et al, [SC2018, WACCPD 2018 Workshop]



High Priority Physics Issues: GTC integrated simulation 
of multiple processes, cross-scale interaction

A. B. C.

B. C.

qmin

• Gyrokinetic model for all species: thermal ions & electrons, beam ions

• Linear simulations find unstable low-n reversed shear Alfven eigenmode (RSAE), 

intermediate-n toroidal Alfven eigenmode (TAE), and high-n ion temperature gradient (ITG)

• Initial nonlinear simulation beyond saturation of RSAE/TAE/ITG

RSAE/TAE/ITG in DIII-D shot 158243 at 805ms
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Progress on reduced fidelity models for EP stability and 
transport is essential for whole device modeling

• First step: need to rapidly evaluate Alfvén stability and mode 
structures

– Perturbative analysis (NOVA-K, AE3D-K)

– Non-perturbative gyrofluid closure models (FAR3D, TGLF-EP)

• Second step: must couple EP stability with energetic particle 
transport evaluation

– Critical gradient models (TGLF-EP & Alpha)

– Resonance-broadened quasilinear (RBQ) model

– Perturbative phase space orbits (Kick model)

– Rapid (GPU-based) fast ion Monte Carlo models with Alfvén mode 
structures (future versions of AE3D-K)
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High Priority Issues: long time nonlinear simulations via
Computational improvements to the EP gyro-Landau 
fluid model (FAR3D)

• Source/sink models 
affect intermittency

• Zonal flows/currents 
stronger for the fixed 
EP profile case 

• Neoclassical damping 
of zonal flows recently 
added

• Will allow first-of-a-
kind consistent study 
of intermittency

Edge
magnetic

fluctuations
𝜹B𝛳 / B

Spectrograms

EP density profile evolves EP density profile fixed

Main AE modes

Zonal flows/currents[Poster by Spong]



Development of EP modules for WDM: 2D generalization of RBQ

“Formulate RBQ2D approach for full resolution in velocity. Use NOVA-K 
interface for single modes. Implement slanted phase space diffusion. Apply 
RBQ1D for VV with velocity space resolution.”

• slanted scheme being implemented via an improved iterative implicit 
method (McKee et al, J. Comp. Phys. 1996)

• Scheme has been verified against known analytical solutions in limiting 
cases: error accumulation and solution stability were studied.

• Multiple modes introduce a variety of diffusion paths

• Burning plasma modeling will be computationally expensive Scaling laws for numerical error: grid spacing and 
time stepping dependence

Relative error does not accumulate

Numerical distribution function: 
unconditionally stable

[Poster by Gorelenkov]



Kick model has been extensively tested for NTMs, being 
extended to other low-f instabilities

ISEP SciDAC update (M. Podestà, PPPL) 12

• Successful application of kick model to DIII-D experiments with NTMs 

(from Y3)

– Model reproduces measured EP transport from FIDA, NPA, neutrons based on 

experimental NTM parameters (island width, frequency, helicity)

• TRANSP + kick simulations being extended to DIII-D scenarios with NTMs + 

fishbones (from Y4)

• Kick model being updated to deal with broad class of instabilities

– Fishbones, kinks

– 3D fields: start with ripple then extend to Resonant Magnetic Perturbations (from Y4)

– Microturbulence: enable direct comparison with TGLF-EP/ALPHA 

[Heidbrink NF 2018] [Bardoczi PPCF 2018]
[Podestà NF 2019 (in press)]

[Liu IAEA-TCM EP 2019]

[Podestà NF 2019 (in press)] [Cecconello IAEA-TCM EP 2019]



EM Bass/IAEA-FEC/October. 2018 Bass, E.M.       Slide 13

TGLF-EP+Alpha is the simplest, fastest EP transport model 
available → extensive validation possible and necessary

TGLF-EP+Alpha is a 1D critical-gradient model 

(CGM) using gyro-fluid stability calculations 

and a stiff AE-EP transport assumption.

Model features:

Stiff transport forces the gradient to 

not (much) exceed a “critical 

gradient” of AE transport (essentially 

the linear stability threshold).

• Increasingly automated, minimal 

human judgment required

• Fully physics-based! No “fudge factors” 

or AE inputs from experiment.

• Highly reduced → inexpensive

Simplifying assumptions (Maxwellian EPs; stiff, local transport; no velocity-space 

dependence; etc.) make validation especially necessary to map applicability.
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In ITER, coupled alpha and NBI drive nearly doubles confinement loss from 

mid core. Net edge loss is small !

Outside AE-unstable region (center and edge) flux comes from 

background transport component.

Mid-core AEs redeposit EPs outward

self: 14.1% 23.1%

coupled: 23.5% 37.3%

self: Each EP species drives 

only its own transport

coupled: Simultaneous drive 

transports both species.

EPs redistributed from 

inner core to outer core

alphas NBI ions



SciDAC ISEP: Integrated Simulation of Energetic Particles

• Develop integrated simulation of EP physics via 1st-principles ISEP framework 

• Study high priority EP physics issues: 
✓ integrated simulation of EP coupling with thermal plasmas

✓ long time scale simulation of EP confinement [Poster by Spong]

• Develop EP modules for WDM: TGLF-EP + Alpha, RBQ & Kick (+TRANSP) [Poster by 

Gorelenkov]

• Convergence of 1st-principles simulation with deep learning? [Oral by Tang; Poster by Dong]

• ISEP leads V&V of EP modules in world fusion program



Highlights of AI/Deep Learning FRNN Code

SciDAC-4 ISEP Project

William Tang

Princeton University/Princeton Plasma Physics Laboratory (PPPL)

SciDAC-4 PI Meeting

Rockville, MD

July 16-18, 2019

FRNN Project Team

Julian Kates-Harbeck (Harvard U/PPPL), Alexey Svyatkovskiy (Microsoft/PPPL), Eliot 
Feibush (PPPL/Princeton U), Dan Boyer (PPPL), 

Keith Erickson (PPPL), Ge Dong (PPPL), Kyle Felker (ANL/PPPL)



Artificial Intelligence/Deep Learning brings new technology to accelerate progress

"Predicting Disruptive Instabilities in Controlled Fusion Plasmas through Deep Learning”

NATURE:   (accepted for publication, Jan. 2019, published, April 17, 2019 –

DOI: 10.1038/s41586-019-1116-4)

Princeton’s Fusion Recurrent Neural Network code (FRNN) uses convolutional & recurrent

neural network components to integrate both spatial and temporal information for predicting 

disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers



Identify 

Signals

• Classifiers

Preprocessing

and feature 

extraction

Train model,

Hyper parameter 

tuning

All data placed on appropriate 

numerical scale ~ O(1)

e.g.,  Data-based with all 

signals divided by their 

standard deviation

Princeton/PPPL DL 

predictions now advancing 

to multi-D time trace 

signals (beyond zero-D)

Machine Learning Workflow

Normalization

Measured sequential data 

arranged in patches of 

equal length for training

Use model for 

prediction

• All available data analyzed;

• Train LSTM (Long Short Term 

Memory Network) iteratively;

• Evaluate using ROC (Receiver 

Operating Characteristics) and 

cross-validation loss for every 

epoch (equivalent of entire data 

set for each iteration) 

Apply ML/DL software on 

new data





kkkk



Figure Caption:  System overview and disruption-prediction workflow (a—e)

Top Image:   interior view of the JET tokamak, with a non-disruptive

plasma on the left and a disruptive plasma on the right. 

Diagnostics (a) provide streams of sensory data (b) which are fed to the RNN-based deep learning algorithm (c) 

every 1 ms, producing a corresponding ‘disruptivity’ output at every time step (d). 

If output crosses a preset threshold value (dashed horizontal line), a disruption alarm is called (red star)

Alarm triggers mitigation action, such as gas injection (e) into the tokamak, to reduce the deleterious effects of the 

impending disruption (f).

Detailed schematic of our deep-learning model:   
Input data consist of scalar zero-dimensional (0D) signals and 1D profiles.

N layers of convolutional (containing NF filters each) and down-sampling (max-pooling) operations reduce  

dimensionality of the profile data and extract salient low-dimensional representations (features).

Features are concatenated with the 0D signals and fed into a multi-layer long-short term memory network (LSTM)

with M layers, which also receives its internal state from the last time step as input. 

The resulting final feature vector ideally contains salient information from the past temporal evolution and 

the present state of all signals.

This vector is fed through a fully connected layer to produce the output.



HIGHLIGHTS OF KEY ACHIEVEMENTS FEATURED 

IN NATURE PAPER (2019)

•  Implementation of modern AI/Deep Learning advances enabled key 
achievements for Fusion Energy Science including:  

(1) Establishing ability to deal with one-dimensional physics signals for the first 
time – a significant improvement over previous Machine Learning R&D with 
focus on scalar-only “zero-D” signals.

(2) First demonstration of crucially-needed ability for predictive software trained 
on one experimental device (e.g., DIII-D tokamak) to make accurate 
predictions on another (e.g., the much larger, more powerful JET system) –> a 
key requirement for ITER relevance.

(3) Unique demonstration of AI/DL software capability to efficiently utilize 
leadership class supercomputers -- e.g., Titan, Summit in US; Tsubame-3 in 
Japan, etc. – and exciting powerful systems in near future such as AURORA-
21 (US), ABCI (Japan), ......



Integration of HPC (using GTC Exascale Code) 

with Deep Learning  Workflows (using FRNN DL Code)

• “Knowledge & experience” now in place for carrying out path-to-

exascale HPC  simulations of ITER-relevant burning plasmas with 

powerfu
• Electromagentic GTC code → ESP selection for SUMMIT and 2019 INCITE awardee 

of 740K SUMMIT Node Hours – 151% above our request !

• Neoclassical tearing modes (NTM’s) already experimentally observed  in JET, but NO 

realistic models yet developed as improved pre-disruption classifiers in Machine 

Learning workflows → because of inability to include  measured higher-D profiles 

(only scalars)

• CNN & RNN allow including realistic 1D & higher-D measurements of

profiles to enable first-principles-based reduced models of NTM ’s
(supported by exascale GTC code) to be used in FRNN workflows

• Very encouraging recent progress – see Poster by Ge Dong:

→ FRNN Sensitivity Study: Connection between NTM & Disruption Prediction in DIII-D

Good Example of “integration of HPC with DL” !



Vision for Control Capabilities to Enable Real-Time Experimental Planning
Dan Boyer, Keith Erickson, … plus experimental/advanced diagnostic expertise

• Can we make our models fast & accurate enough?

--- e.g., via reinforcement learning/inference/ …...

• Can we make our models realistic enough?

--- e.g., via focused actuator planning with experimental partners

Estimate:  plasma 
state from  limited
measurements (DIII-D)

Real-time  
Diagnostics

“Where 
we think 
we are"

Supervisory control: shut 
down the shot or change  
mission requirements (TBD)

Real-time prediction

on DIII-D
Actuator planning
to optimize performance
+ avoid machine limits
via FRNN & DIII-D

“Where  
we want  
to go"

“Where we  
think we  
could go"

Much-faster-than-real-time prediction

Forecast
future behavior of the  
shot via FRNN

“Where we  think 
we can be"

Faster-than-real-time prediction

Actuator  
plan



Initial plans for moving from AI Predictions to Control: 

Year 1:  

• Design/train/test predictive plasma models for real-time control (e.g., beam 

Neural network), including gaining experience on modern real-time computer;

• Modify AI/DL FRNN predictor for real-time determination of disruption probability 

and sensitivity to controllable plasma parameters; 

Year 2: 

• Initial development of control strategy with variety of decision-making algorithms; 

& initial deployment and testing of FRNN in real-time hardware. 

Year 3:  

• Delivery of initial results from an operating integrated tokamak control 

system equipped with modern Real-time computer hardware needed for the FRNN 

AI/DL predictor trained on large existing databases.

Long Term Impact on Future Devices/ITER:  Successful Development of

• Advanced control strategies based on unique  AI/DL  Predictors needed for 

optimization of performance and avoidance of disruptions in tokamaks.

• Vetting of stable, scalable, portable control systems and associated methodology 

methodology on existing tokamaks (e.g., DIII-D, KSTAR, …) 



DL/AI Vision Summary in Moving from Prediction to Control

ZERO-D to HIGHER-D SIGNALS via 

CONVOLUTIONAL NEURAL NETS (CNN) CNN

0D signals 1D

• Enables immediate learning of generalizable features (→

helps enable cross-tokamak portability of DL/AI software)

ControlAlgorithm

Environment

• Reinforcement learning enables 

transition  from PREDICTION to 

CONTROL !

• Takes advantage of increasingly 

powerful world class HPC 

(supercomputing) facilities !


