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Boundary-plasma strongly affect fusion performance

• Boundary plasma (edge and SOL) believed
to set boundary conditions on the core

• Improved confinement associated with
transient suppression of edge turbulence1

• ITER projections show fusion performance
highly sensitive to the H-mode-pedestal
temperature, relatively insensitive to
auxiliary power heating (‘core profile
stiffness’)

• Need reliable, fully predictive simulations
of the pedestal to quantitatively model the
core

• How to increase the pedestal pressure?
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SOL power-exhaust problem is potential show-stopper

• Most of power (100 MW on ITER)
released in the SOL flows in an extremely
narrow channel ∼1 mm

• On ITER, need to dissipate most (∼95%
(Goldston, 2015)) of this power somehow
before it reaches the divertor plates

◦ Material limitations ∼10 MW m−2,
ITER operation can ‘easily’ reach
∼30 MW m−2

• If SOL heat-flux width is too narrow, even
steady-state power loads can result in
material erosion

◦ ITER designs have assumed
λq = 5 mm, empirical extrapolation2 of
1 mm (Bpol ≈ 1.2 T)

• ELMs represent an even larger threat to
materials...

case of DIII-D) during which plasma conditions were con-

stant. Several such intervals from the same shot were then

ensemble averaged to obtain an estimate of the standard

deviation.

A power law type scaling consisting of a minimum set

of ordering parameters was then sought by systematically

searching various combinations of the regression parameters.

Parameters were eliminated by examining their exponent in

the power law and associated variance in the analysis of var-

iance (ANOVA) table and rejecting those with small expo-

nents (<0.1) and associated with small relative variances

and/or small F-statistics. This substantially reduced the num-

ber of statistically meaningful parameters. As mentioned

above, the values of the exponents in the power law was

somewhat dependent on the choice of heat flux width

(FWHM, sum of exponentials, or integral) and the weighting

of the data. This is discussed further below.

B. Scaling relations

The principal result of this process is a scaling law with

a robust dependence of the heat flux width on IeI
p with

eI � �1. Significantly, each of the three devices independ-

ently demonstrates this dependence, although the value of eI

differs from each other and from the combined data set. This

is shown in Fig. 4, which plots ksol versus plasma current

individually for the three devices. Here, we have chosen to

plot ksol against Ip, as the Ip dependence is strongest for this

measure of the heat flux width. Since Ip is related to q95 and

Bp;mp (poloidal field at the midplane), similar dependencies

on these parameters were also found.

When fitting with Ip, the most significant size depend-

ence (among the minor radius, a, the major radius, R0, and

the inverse aspect ratio e) found was with aea with ea � 0:5.

This is shown in Fig. 5, which plots regressions of the form

k ¼ C � IeI
p Beb

t aea f
ef

G ; (4)

where C is a constant, for two different integral widths: kint

and keich�int [as defined in Eqs. (1)–(3)]. Weaker dependen-

cies were found on fG and Bt. Not all devices echoed these

dependencies when their data were analyzed separately.

Good correlations were obtained with both measures of the

FIG. 3. Parallel heat flux versus midplane major radius. Data (dashed line)

and a fit to the data using the Eich fitting function with parameters as listed

(solid line). The locations of the EFIT and fit separatrix are indicated are

within 1 mm of one another. The uncertainty in the EFIT separatrix location

is depicted by the gray band.

FIG. 4. Independent fits of ksol versus C � Ie
p for each of the three devices.

The exponent, e, of the power fit varies between devices.

FIG. 5. Comparison of regressions against kint and keich�int (as defined in

Appendix). Both demonstrate a similar and significant dependence on a and Ip

and a weaker dependence on Bt and fG. The correlation with kint is better.
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Approaches for boundary-plasma simulation

• Sophisticated codes for fluid-based modeling of the boundary
plasma have been developed.
◦ Fluid transport codes: Model cross-field transport as diffusion and

employ free parameters to match experimental profiles (interpretive
use). SOLPS/UEDGE remain the principal tool for ITER
boundary-plasma modeling.

◦ Fluid turbulence codes (fluid and gyrofluid): Qualitatively useful, but
cannot fully capture potentially important kinetic effects.

• We need kinetic codes solving 5D (R, v‖, µ) gyrokinetic equations
in the edge and SOL for quantitative prediction
◦ First-principles-based approach valid across a wide range of

collisionality regimes
◦ Parallel variations in T , n, φ on order of mean free paths
◦ Help improve models and boundary conditions used in much cheaper

fluid codes
◦ Check empirical extrapolations to ITER
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Attempts at gyrokinetic continuum code for boundary

We are not the first ones to attempt this!

• TEMPEST (LLNL, ∼2005–2010) — Finite-difference scheme, performed
some axisymmetric studies. Conservation issues?

• G5D (JAEA, ∼2007–present) — Conservative finite-difference scheme,
stated goal of open-field-line turbulence appears to have been dropped.

• FEFI (IPP Garching, ∼2009–?) — 4th-order Arakawa scheme. Went
directly to electromagnetics. Issues with Alfvén dynamics and
sheath-model stability.

• COGENT (LLNL, ∼2008–present) — 4th-order finite volume.
Axisymmetric 4D transport simulations in realistic divertor geometry and
initial tests in a 5D performed

This is a very hard problem and has required us to overcome many
numerical and physics challenges.
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Status of gyrokinetics in Gkeyll

• Initial work by Eric Shi3 led to 5D electrostatic full-F GK
simulations of LAPD and NSTX-like helical SOL with sheath BCs

• Discontinuous Galerkin (DG) discretization scheme
◦ high order method, local and parallelizable
◦ conserves energy for Hamiltonian systems (like GK)

• Over past year, we have been developing a new version of Gkeyll
◦ Moving from nodal to modal DG representation → orthonormal basis

functions, quadrature-free, computer algebra-generated solver kernels
(much easier to generalize to higher dimensionality/polynomial order),
O(10) faster

◦ Much simpler user interface, details abstracted away

• Have reproduced many of Shi’s results with new version of Gkeyll

• New nonlinear SOL simulations with electromagnetics

3See 2017 thesis; JPP 2017 paper on LAPD; and PoP 2019 paper on Helical SOL
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Gyrokinetic Model in Gkeyll (electrostatic)

• Gkeyll solves the gyrokinetic system in the long-wavelength
(drift-kinetic) limit for the gyrocenter distribution function
f (R, v‖, µ, t):

∂J f
∂t

+∇ · (J {R,H} f ) +
∂

∂v‖
(J
{
v‖,H

}
f ) = JC [f ] + J S ,

−∇⊥ ·
(
ng0mi

B2
∇⊥φ

)
= σg = e [ngi (R)− ne(R)] ,

H =
1

2
mv2
‖ + µB + eφ,

where J = B∗‖ , C [f ] represents a model of collisions, and

{F ,G} =
B∗

mB∗‖
·
(
∇F ∂G

∂v‖
− ∂F

∂v‖
∇G

)
− b̂

qB∗‖
×∇F · ∇G

• Linearized ion polarization density for now (constant ng0 )
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Conducting-Sheath Boundary Conditions

Parallel Coordinate
φw

φsh

P
o
te
n
ti
a
l

∆φ = φsh − φw

Region Resolved in Simulation

ni = neni > ne

• Need to model effects of non-neutral sheath using BCs

• Get φsh(x,y) from solving GK Poisson equation, then use ∆φ = φsh − φw
to reflect low-v‖ electrons entering sheath

◦ Kinetic version of sheath BCs used in some fluid models (also similar
to some gyrofluid sheath BCs)

• Potential self-consistently relaxes to ambipolar-parallel-outflow state

• Allows local currents into and out of the wall

• No BC applied at sheath to ions (free outflow)
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Sheath-Model Boundary Conditions for Electrons

-4 -2 0 2 4

Parallel Velocity v‖/vt

0

0.2

0.4

0.6

0.8

1
O
u
tg
o
in
g
D
is
tr
ib
u
ti
o
n
F
u
n
ct
io
n

-4 -2 0 2 4

Parallel Velocity v‖/vt

0

0.2

0.4

0.6

0.8

1

R
efl
ec
te
d
D
is
tr
ib
u
ti
o
n
F
u
n
ct
io
n

v‖ > vcut f(v‖ > 0) = 0

(a) (b)

Figure: Illustration of sheath-model boundary condition. (a) Outgoing
electrons with v‖ > vcut =

√
2e∆φ/m are lost into the wall, where

∆φ = φsh − φw , φsh is determined from the GK Poisson equation, and
φw = 0 for a grounded wall. (b) The rest of the outgoing particles
(0 < v‖ < vcut) are reflected back into the plasma.
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Heat-flux profiles narrow with increased Bp
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Figure: Time-averaged radial profiles of the total perpendicular heat flux
q⊥ = q‖ sin θ = q‖Bv/Bz measured at the sheath entrance for three
simulations with different magnetic-field-line pitches. A larger Bv/Bz results
in a steeper heat-flux profile, similar to how the SOL heat-flux width scales
with Bp in present-day tokamaks.
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Particle-flux as function of poloidal field

Figure: Comparison of radial E × B particle flux evaluated at the midplane
for three different poloidal fields. Increasing the poloidal field decreases the
radial flux, consistent with the heat-flux profiles on the divertor plate. For
comparison, Bohm fluxes estimates are shown as dashed lines.
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Larger amplitude, more intermittent blobs in SOL

Figure: Comparison of electron-density fluctuations (top row) and
electrostatic fluctuations (bottom row) at mid-plane. The density
fluctuations (blobs) are larger amplitude and more intermittent than the
potential fluctuations which show much smaller skewness and kurtosis.
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Ion and electron temperatures are not in equilibrium

Figure: Radial profiles of steady-state ion (left) and electron (middle) profiles
near midplane. Right plot shows ion-to-electron temperature ratio. Although
both electrons and ions are sourced at the same temperature, the sheath
allows rapid loss of high energy electrons to wall, resulting in lower electron
temperatures in the SOL.
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What about electromagnetics?

• Electromagnetic effects are especially important in the edge and
SOL, where steep gradients can push the plasma close to the
ideal-MHD stability threshold and produce stronger turbulence

• Including electromagnetic fluctuations has proved challenging in
some PIC codes, in part due to the well-known Ampère
cancellation problem

• Continuum gyrokinetic codes for core turbulence have avoided the
Ampère cancellation issue

• As Gkeyll uses a continuum formulation, we expect that we can
handle electromagnetic effects in the edge and SOL in a stable and
efficient manner
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Hamiltonian (p‖) vs. Symplectic (v‖) formulation of EMGK

In the Hamiltonian gyrokinetic formalism (see e.g. Brizard & Hahm, 2007),
there are two formulations for including electromagnetic fluctuations:

• Hamiltonian formulation: p‖ = mv‖ + qA‖

∂f

∂t
= {H, f }

H =
1

2m
p2
‖ + µB + qφ =

1

2m
(mv‖ + qA‖)

2 + µB + qφ B∗ = B0 +
1

q
p‖∇× b̂

• Symplectic formulation: p‖ = mv‖

∂f

∂t
= {H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

H =
1

2
mv 2
‖ + µB + qφ B∗ = B0 +

m

q
v‖∇× b̂ + δB⊥

Poisson bracket:

{F ,G} =
B∗

B∗‖
·
(
∇F ∂G

∂p‖
− ∂F

∂p‖
∇G

)
− b̂

qB∗‖
×∇F · ∇G
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Hamiltonian (p‖) vs. Symplectic (v‖) formulation of EMGK

In Gkeyll’s DG scheme, the distribution function and other fields can
be discontinuous across cell boundaries, but energy is conserved
only if the Hamiltonian is continuous
• Hamiltonian (p‖) ⇒ both φ & A‖ must be continuous

• Symplectic (v‖) ⇒ φ must be continuous, but A‖ (and
∂A‖
∂t

) can be
discontinuous in parallel direction

Ex) MHD limit, E‖ = 0⇒ ∂φ
∂z = −∂A‖

∂t

Piecewise linear φ ⇒ piecewise constant ∂φ
∂z
⇒ piecewise constant

∂A‖
∂t
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Ampère cancellation problem: Hamiltonian formulation

In Hamiltonian formulation, Ampère’s law becomes(
−∇2

⊥ + Cn

∑
s

µ0q

m

∫
d3p f

)
A‖ = Cj µ0

∑
s

q

m2

∫
d3p p‖f

The“cancellation problem” arises when there are small errors in the calculation of
the integrals. These errors are represented by Cn and Cj (which should both be
exactly 1 in the exact system).

The simplest Alfvén wave dispersion relation (slab geometry, uniform Maxwellian
background with stationary ions) becomes (with β̂ ≡ βe

2
mi
me

)

ω2 =
k2
‖v

2
A

Cn + k2
⊥ρ

2
s/β̂

[
1 + (Cn − Cj)

β̂

k2
⊥ρ

2
s

]
This reduces to the correct result if integrals calculated consistently, so that
Cn = Cj , but if not there will be large errors for modes with β̂/k2

⊥ρ
2
s � 1.
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Ampère cancellation problem: symplectic formulation

In symplectic formulation, Ampère’s law is

−∇2
⊥A‖ = µ0

∑
s

q

∫
d3v v‖f

However, we need a way to handle the
∂A‖
∂t

term that appears in the GK equation.
One way is to take ∂

∂t
of Ampère’s law, which gives an Ohm’s law:

−∇2
⊥
∂A‖
∂t

= µ0

∑
s

q

∫
d3v v‖

∂f

∂t
= µ0

∑
s

q

∫
d3v v‖

[
{H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

]

⇒

(
−∇2

⊥ + Cn

∑
s

µ0q
2

m

∫
d3v f

)
∂A‖
∂t

= Cj µ0

∑
s

q

∫
d3v v‖{H, f }

Same dispersion relation, but integrals over v‖, not p‖. These can easily be
calculated consistently so that Cn = Cj and there is no cancellation problem.
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We choose symplectic formulation of EMGK

Electromagnetic GK equation:

∂f

∂t
= {H, f }+

q

m

∂f

∂v‖

∂A‖
∂t

+ C [f ] + S (1)

=
∂f

∂t

?

+
q

m

∂f

∂v‖

∂A‖
∂t

,

with H = 1
2
mv 2
‖ + µB + qφ, and ∂f

∂t

? ≡ {H, f }+ C [f ] + S
Quasineutrality equation (long-wavelength):

−∇ ·
∑
s

mn0
B2
∇⊥φ =

∑
s

q

∫
d3v f (2)

Ohm’s law: solve directly for ∂A‖/∂t(
−∇2

⊥ +
∑
s

µ0q
2

m

∫
d3v f

)
∂A‖
∂t

= µ0

∑
s

q

∫
d3v v‖

∂f

∂t

?

(3)

Parallel Ampère equation: only used for initial condition on A‖

−∇2
⊥A‖ = µ0

∑
s

q

∫
d3v v‖f (4)

19 / 23 Gkyell Continuum electromagnetic Gyrokinetics A. Hakim



Explicit time-advance scheme

Given f n and An
‖ at the beginning of timestep n,

1. Calculate φn:

−∇ ·
∑
s

mn0
B2
∇⊥φn =

∑
s

q

∫
d3v f n

2. Calculate partial GK RHS:(
∂f

∂t

?
)n

= {Hn, f n}n + C [f n] + Sn

3. Calculate
(
∂A‖
∂t

)n
:(

−∇2
⊥ +

∑
s

µ0q
2

m

∫
d3v f n

)(
∂A‖
∂t

)n

= µ0

∑
s

q

∫
d3v v‖

(
∂f

∂t

?
)n

4. Advance f n+1 and An+1
‖ :

f n+1 = f n + ∆t

[(
∂f

∂t

?
)n

+
q

m

∂f n

∂v‖

(
∂A‖
∂t

)n]
An+1
‖ = An

‖ + ∆t

(
∂A‖
∂t

)n
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Linear Benchmark: Kinetic Alfvén Waves
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Linear Benchmark: Kinetic Ballooning Mode Instability

k⊥ρi = 0.5, k‖Ln = 0.1, R/Ln = 5, R/LTi = 12.5, R/LTe = 10, τ = 1
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Summary & Future Work

• We have a new version of the Gkeyll code that is faster and
includes EM

• We have demonstrated that our formulation and scheme for
EMGK is effective and avoids the Ampère cancellation problem

• We have successfully completed some basic linear EMGK
benchmarks

• We have performed preliminary nonlinear full-F continuum
EMGK SOL simulations

• In-progress/Future Work:
◦ Detailed comparison of ES and EM GK simulations in helical SOL

geometry
◦ Generalize the geometry to better model NSTX SOL, and also to

include closed field line regions
◦ Include FLR effects (beyond the first order polarization drift)
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