High fidelity RF wave solver for the fusion edge

M. Stowell, D. M. Copeland Lawrence Livermore National Laboratory

D. L. Green, D. B. Batchelor, E. D'Azevedo Oak Ridge National Laboratory

S. Frank, C. Migliore, S. Shiraiwa, J. Wright Massachusetts Institute of Technology

M. Shepard, M. Hakimi, U. Riaz Rensselaer Polytechnic Institute

RF-SciDAC : Center for Simulation of Fusion Relevant RF Actuators <u>http://rfscidac4.org</u>

Stix Mini-App : Overview

Plasma wave equation solver in pseudo-2D (work in progress) and pseudo-1D

$$\frac{1}{\mu_0} \nabla \times \nabla \times \vec{E} - \omega^2 \epsilon_0 \vec{E} + i\omega \vec{\sigma} \vec{E} = -i\omega \vec{J_{ext}}$$
Current Boundary Conditions supported:
- Conducting (1D, 2D)
- Absorbing (1D, 2D)
- Absorbing (1D, 2D)

Linear finite sheath (1D)

Stix Mini-App : 1D Model

(Based on Kohno 2017)

- Slab antenna
- B in z direction (can be changed)
- User specified BCs for all edge faces

[H. Kohno, et. al., Phys. Plasmas 19, 012508 (2012)]

Stix Mini-App : Finite Sheath BC

Example: Same plasma and setup parameters, different BCs

Left plot shows sheath BC allows Ex to no longer be zero

Stix Mini-App : Current and Future Work

• In 1D, implementing non-linear finite sheath BC:

$$E_t = \nabla_t \left(\frac{\omega}{i} D_n z\right) \quad \text{where} \quad \frac{1}{z} = \frac{\langle JV_1 \rangle}{\langle V_1^2 \rangle} - \frac{i\omega \langle JV_1 \rangle}{\langle \dot{V}_1^2 \rangle}$$

• In 2D Stix:

- [J. Myra, et al., Phys. Plasmas 22, 062507 (2015)]
- Incorporating current source in desired location

- Linear finite sheath BC non-linear finite sheath BC
- Create a more representative 2D mesh cross-section of a tokamak
- Non-uniform density in propagation direction
- Incorporating into PETRA-M

Preconditioners : WKB I

- For large numbers of DOF (>100M) direct methods exhibit scaling problems which prevent utilizing of larger compute systems.
- Fast preconditioners are required to enable the problems of interest.
- WKB based preconditioner
 - Data parallel.
 - Can provide estimate of E field.
 - Requires volumetric source term to be used as a preconditioner.

Preconditioners : WKB II

Solve Helmholtz equation in 1D

$$\frac{d^2Y}{dx^2} + k^2(x)Y = f(x)$$

Homogeneous and particular solutions given as

$$Y_1, Y_2 = \frac{1}{\sqrt{k(x)}} \exp(\pm i \int_0^x k(t) dt)$$

$$Y_p = U_1(x) Y_1(x) + U_2(x) Y_2(x)$$

$$0 = U_1' Y_1 + U_2' Y_2$$

$$f = U_1' Y_1' + U_2' Y_2'$$

Solve for C1 and C2 to satisfy boundary conditions

$$Y = Y_p + C_1 Y_1 + C_2 Y_2$$

k(x) = 100 * (2 + cos(2*x)), numeric residual and analytic residual

Preconditioners : Algebraic I Symmetric-Positive-Definite Preconditioner

We need a preconditioner for $\,
abla imes (\mu^{-1}
abla imes ec{E}) - \omega^2 \epsilon ec{E} \,$ where

$$\epsilon = egin{pmatrix} S & -iD & 0 \ iD & S & 0 \ 0 & 0 & P \end{pmatrix}$$
 Where $ec{B} = |B| \hat{z}$

The obvious place to start is with $\
abla imes (\mu^{-1}
abla imes ec{E}) + \omega^2 lpha ec{E}$

Where
$$lpha\equivegin{pmatrix}A&0&0\\0&A&0\\0&0&|P|\end{pmatrix}$$
 and $A\equivrac{1}{2}(|S+D|+|S-D|)$

Clearly this can easily be rotated to align with more general magnetic fields.

Preconditioners : Algebraic II Applications in 1D

- Same 1D case as in miniapp, with sheath boundary conditions -> Non Hermitian, requires GMRES
- Using Euclid ILU preconditioner with symmetric positive definite precondition described on last slide
- Single core runs.
- Iteration count slowly grows as number of elements increases likely because error correction has to propagate along wave characteristics
- Solver time increases linearly

Preconditioners : Domain Decomposition

- While the positive definite algebraic preconditioner works for 1D problems, the larger null space in higher dimensions becomes problematic.
- A domain decomposition preconditioner where the solution is solved exactly (SuperLU or SPARSEPACK) leaving error only at the interfaces should work better in 3D problems.
- Initial 3D study for model problem on the right:

h	k^2	kh	Iter	$\operatorname{Re} \ E_h - E\ _{L^2}$	Re $\frac{\ E_h - E\ _{L^2}}{\ E\ _{L^2}}$	$\mathrm{Im} \; \ E_h\ _{L^2}$
0.140308	2	0.20	33	0.174009	0.28416	3.35228e-09
0.140308	10	0.44	32	0.126879	0.20719	2.11609e-09
0.140308	51	1.00	39	0.135315	0.22097	1.16478e-08
0.0701539	2	0.10	38	0.0912488	0.14901	5.21567e-09
0.0701539	10	0.22	34	0.0625769	0.10219	1.00206e-09
0.0701539	51	0.50	45	0.0662409	0.10817	6.04593e-09
0.0350769	2	0.050	38	0.0912488	0.14901	5.21567e-09
0.0350769	51	0.25	49	0.0329131	0.053746905	4.29369e-08

Table 1: GMRES (relative tolerance 1e-8) tests on complex-valued DDM reduced interface system, with FEM order 1. Parameters from Rawat and Lee 2010 are used. L^2 norms are on one subdomain (results are nearly identical on the two subdomains). Exact solution (1).

Exact solution for model source with Exn=0:

$$E = (\sin(\pi y)\sin(\pi z), \sin(\pi x)\sin(\pi z), \sin(\pi x)\sin(\pi y)).$$

$$abla imes
abla imes E - k^2 E = (2\pi^2 - k^2)E.$$

Preconditioners : Reduced Precision I

Using a direct solver to provide an approximate inverse of system matrix reduces memory and/or FLOPS requirement, thus allowing for solving a larger problem size.

- Immediately applicable to realistic 3D problems.
- Potentially fit well for coarse grid solver in MG

Questions:

Does it work well for indefinite-Maxwell problems?

Preconditioners : Reduced Precision II

DIII-D high field silde lower hybrid launcher being designed/built by MIT

- 15-20 GMRES iteration
- Possible to resolve LH wave scattering in 3D
- 110 M DoFs (exceeding project 5th year milestone)

Code Acceleration : TORLH GPU Porting

 GPU Hackathon Small Scale (1 Summit Topology Node) Results •NVBLAS – 2-3x speedup primarily in calls to SCALAPACK matrix multiplication routines with no code restructuring.

torlh	was	called	1	times.	total	356.86	secs
gloini	was	called	1	times.	total	9 02	secs
ťftl ini	was	called	1	times,	total	.99	secs
equil	was	called	1	times,	total	0.03	secs
mhdcoe	was	called	1741	times,	total	0.00	secs
coords	was	called	1107	times,	total	0.07	secs
fftl dir	was	called	13515	times,	to* .	0.06	secs
init zvec	was	called	1	times.	+ cal	0.00	secs
allocGk	was	called	1	times	cotal	0.05	secs
allocFk	was	called	1	time .	total	0.04	secs
mblock	was	called	33	t es.	total	82.44	secs
mblock:inside plasma	was	called	99	.imes.	total	82.36	secs
operev	was	called	5	times.	total	77.17	secs
fftl inv256	W'is	called	1637 .17	times.	total	7.44	secs
dieltn	Waa	called	/172	times.	total	14.68	secs
zetaRe	was	called	19032064	times.	total	8.14	secs
coamswar	was	called	132	times.	total	9.66	secs
pzgetrf	was	called	167	times.	total	15.43	secs
pzgemm	was	called	825	times.	total	79.53	secs
cgamswap	was	called	99	times.	total	1.79	secs
add block r w d fr	vas	called	33	times.	total	89.74	secs
form rhs from zk	was	called	33	times.	total	0.00	secs
pzgetrs.Gk=EkBk	was	called	1	times.	total	1.15	secs
pzgetrs, vk=Ekvk	was	called	33	times.	total	0.08	secs
vvec<-vk	was	called	33	times	total	0.00	Secs
putGk	was	called	33	times.	total	0.02	Secs
nzaetrs Gk=EkGk	was	called	32	times,	total	38 42	Secs
vkml<-vvec	was	called	32	times,	total	0 00	Secs
nzgemm vk=vk-Ck*vkm]	was	called	32	times	total	0.00	Secs
nzgetrs T1=T2T1	was	called	1	times	total	1 10	secs
nzgetrs T3=T2T3 2	was	called	1	times,	total	1 18	Secs
nzgetrs vcvc=T2vcvc	was	called	2	times,	total	0.00	secs
ntri solve renlicate	was	called	1	times	total	0.00	sers
solve: yvec <- x in	was	called	î	times	total	0.00	sers
ntri solve distribut	was	called	1	times,	total	0.00	Secs
vvecc-vk	was	called	33	times,	total	0.00	sace
netGk	was	called	32	times,	total	0.00	Secs
	was	called	32	times	total	0.04	Secs
nzaemm vk-vk-Gk*vkn	Was	called	32	times,	total	0.00	sace
solve: y in <- yver	was	called	1	times,	total	0.00	sors
deallocok	Was	called	1	timos,	total	0.00	SACS
deallocEk	Was	called	1	times,	total	0.00	sace
alanur	Was	callod	1	timos,	total	10 10	5000
to nowinit	was	called	i	times,	total	0.00	socs
to_powinic	Was	called	1	times,	total	0.00	Secs
to_deffld	Was	called	1	timos,	total	0.27	sacs
deffld	Was	called	33	times,	total	1.65	Secs
t0 surfn]1	Was	called		timos,	total	0.00	secs
t0_powtwd1	was	called	1	times,	total	0.00	secs
nowtwd	Was	called	1	times,	total	1 57	Secs
elenwr-mni	was	called	11	times,	total	0.01	secs
t0 elbfld	was	called	1	times,	total	0.01	secs
	was	called	101	times,	total	3.07	secs
CLUTLU	was	catteu	401	crucs,	totat	5.9/	3603

Interna	I TORLH	profiling
---------	---------	-----------

	torlh	Mas	called	1	times.	total	215.75	secs
	aloini	W.s	cilie !	sen	times.		9.09	secs
	fftl ini	was	called		times		8.95	secs
	equil	was	called	1	times.	t cal	0.15	secs
	mhdcoe	1.7	callin d	1741	times.	total	0.00	secs
	coords	Was	called	1107	times.	total	0.08	secs
	fftl dir	was	called	13515	times.	total	0.07	Secs
	init zvec	1 as	alled	1	times.	total	0.00	secs
	allocGk		[0]0	1	times	total	0 05	Secs
	allocEk	was	called	î	times.	total	0.04	Secs
I	mblock	was	called	22	times.	total	57 56	Secs
I	mblock inside plasma	Was	called	00	times,	total	57 46	core
I	operev	Was	called	00	times,	total	51 22	sace
	operev	was	calleu	99	LTINES,	LULAL	51.55	secs
	diol to	was	called	27172	times,	total	15 10	5000
		WdS	called	022064	times,	total	13.19	Secs
	Zelake	was	called	122	times,	totat	0.20	secs
	cganiswap	was	calle	132	times,	totat	5.74	secs
ì	pzdetrt	was	called	167	times.	total	31.75	secs
I	pzgemm	was	called	825	times,	total	27.97	secs
	Comewon?			00	timoc	totol	7 00	0000
I	add_block_row_distri	was	caller	33	times,	total	53.29	secs
1		muu	-	7	cames y	cocur		
	pzgetrs,Gk=EkBk	was	call	1	times,	total	0.39	secs
	pzgetrs,yk=Ekyk	was	call d	33	times,	total	0.22	secs
	yvec<-yk	was	cal .	33	times,	total	0.00	secs
I	E P P P P P P P P P P P P P P P P P P P						2.02	
I	pzgetrs,Gk=EkGk	was	ca le	32	times,	total	12.54	secs
1	ykiii1<-yvec	was		32	cruies,	LULAL	0.00	secs
	pzgemm,yk=yk-Ck*ykml	was	c U d	32	times,	total	0.12	secs
	pzgetrs,T1=T2T1	was	11	1	times,	total	0.38	secs
	pzgetrs,T3=T2T3 2	was	/ AF	1	times,	total	0.38	secs
	pzgetrs,ycyc=T2ycyc	was	J. J	2	times,	total	0.01	secs
	ptri_solve_replicate	war	r .ced	1	times,	total	0.25	secs
	solve: xvec <- x_in	wa	alled	1	times,	total	0.00	secs
	ptri_solve_distribut	W	called	1	times,	total	0.14	secs
	xvec<-xk	V. 5	called	33	times,	total	0.00	secs
	getGk	was	called	32	times,	total	0.04	secs
	vk<-vvec	1.75	c 1 2.1 =		time:	lotal	0.00	secs
	pzgemm, xk=xk-Gk*xkp	was	called	32	times,	total	0.10	secs
	solve: x in <- xvec	was	called	1	times,	total	0.00	secs
	dealloc	was	-cila a	1	times.	total	0.00	secs
	deallocFx	was	called	- 1	times.	total	0.00	secs
	elepwr	was	called	1	times.	total	20.21	secs
	to powinit	Was	colled	1	times.	total	0.00	secs
	t0 opere		8111	2 1	times.	total	0.28	secs
	t0_deff1d	Was	called	· · ·	times	total	0 07	SACS
	deffld	was	called	33	times	total	2.40	SACS
	to surfr 1	8			times,	total	0 00	Sece
	t0_powtwd1	Was	called	1	times,	total	0.00	5005
	nowtwo	Was	called	11	timos,	total	1 62	5005
	elepwr-mpi	Was	called	11	times,	total	0.01	secs
	to olbfld	was	called	1	times,	total	0.01	secs
		was	called	401	times,	total	4.01	secs
	etorta	was	Called	481	ermes,	totat	4.01	secs
			\vee	(V I)		$(M \wedge I)$	\vee	Q /

GPU Calls

Code Acceleration : TORLH GPU Porting

- OpenACC acceleration of loopheavy matrix-build routines lead to 2-5x speedup of those routines.
- Communication, idle times, and parallelization changes for GPUs lead to overall slowdown of matrix build however.

Performance at larger scales

(10s to 100s nodes, 10x resolution) is next step.

- We avoided code restructuring long lived legacy code. Code restructuring to an effective, GPU based, algorithm with minimized CPU-GPU communication will be likely be necessary to achieve performance.
- Lots to do on one node, but really need ~10 nodes to see how tuning is different at scale. Planning to request some Summit time to continue work.

Petra-M : <u>Physics Equation Translator for MFEM</u>

FEM analysis platform

- Front-end interface to open source software
- Integrated FEM modeling from geometry to FEM assembly and solve.
- Deployment tool for our advanced physics model
 - Started as RF modeling tool and being applied in many RF problems in fusion experiments
 - Use case is even expanding outside RF waves

Navier-Stokes

Petra-M : RF physics layer on the screen

Solve inhomogeneous Maxwell eq. in frequency domain.

- Cold plasma with collisions
- RF port BCs (Coax, waveguides)
- 3D/2D/1D geometry

	M	odel Tree				
General(NS:global) ▼ Mesh MeshFile1 UniformRefinement1	Config. Selection					
▼ Phys	=epsilonr_pl(x, y, z)					
 EM3D1(NS:tokamak_plasma) Domain Anisotropic1 	mu_r	Elementa	Form 🔽			
Vac1	1.0		0.0	0.0		
Boundary Port1	0.0		1.0	0.0		
Port2	0.0		0.0	1.0		
PEC1 Continuity1 ▼ Pair	sigma	Element	al Form 🔽			
Floquet1	0.00	5	0.0	0.0		
MUMPS1	0.0		0.005	0.0		
	0.0		0.0	0.005		

Petra-M : continues to improve under RF-SciDAC

The first version was released 2018 Aug and being updated constantly

- Support new libraries, such as HYPRE 2.16, MUMUP 5.2, STRUMPACK 3.1
- Add better interface for multi-physics coupling, pre-conditioner...
- Current focus is...
 - MFEM ver 4 support
 - Python 3.7 (migrating Python is trivial, but absorbing Python C-API difference is more challenging)

Physics goal in FY 2020

- Incorporate RF sheath BC to estimate impurity production on JET ILA.
- Incorporate adaptive refinement to allow resolution of slow and fast waves.

Meshing : Adaptive RF Simulation Workflow

- Workflow steps
 - 1. Obtain and clean-up antenna CAD models
 - 2. Combine antenna, reactor and physics geometries
 - 3. Associate analysis attributes
 - 4. Automatic mesh generation
 - 5. MFEM finite element analysis
 - 6. Estimate discretization errors. If below tolerance terminate
 - 7. Adapt mesh and return to step 5
- Tools used
 - Geometry Simmetrix and CAD systems
 - Meshing Simmetrix
 - RF Simulation PetraM and MFEM
 - Error estimation, mesh adaptation PUMI

Steps 1-3 are interactive Steps 4-7 are automated

Meshing : Defeaturing CAD, Combining Geometry

- Analysis geometry definition
 - Antenna defeatured using SimModeler GUI
 - Reactor cross section extruded
 - EFIT data used to construct flux surface
 - Model components combined
- Mesh generation
 - Mesh controls on analysis geometry
 - Automatic mesh generation
 - Curved mesh geometry inflation to higher than quadradic geometry (initial version – further efforts required)

Meshing : Adaptivity in PetraM/MFEM

- Integration with PetraM/MFEM
 - Parallel meshes integrated with MFEM full in memory integration
 - Linkage with PetraM for attribute specification – current version has some file transfer – will be fully in-memory
- Adaptive Mesh Control
 - Patch recovery method for RF implement
 - Conforming mesh adaptation
- Adaptive Example
 - Stratified D port antenna for C-Mod

PetraM attribute specification

PetraM/MFEM result - electric field component on a cut plane

Adapted

Initial and adapted meshes

Backup / removed slides

Preconditioner : WKB Approach III

Comparison of iteration convergence using GMRES with WKB preconditioner for case where the WKB approximation has significant error - similar to a mode conversion surface.

Edge / far-SOL RF Wave Solver Component

