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Hubbard model

Simplest model of interacting particles on a lattice.

Surprisingly few exact solutions.

Rich possibility of phases - Eg: magnetism, 
charge order, superconductivity, spin liquids, 
ground state degeneracies, topological order

Premium on methods that capture the full Hilbert space of a quantum system that scale 
more efficiently than diagonalization.

Goals: 
- develop Tensor Network methods that generalize Density Matrix Renormalization 

Group (DMRG) methods
- Perform fermion-sign free quantum Monte Carlo and benchmark DMRG

SciDAC: Topological and Correlated Matter via Tensor 

Networks and Quantum Monte Carlo
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Algorithmic advances – 2D Tensor Networks
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A central goal of SCIDAC: generalizing the success of DMRG to 2D materials using 

“2D tensor networks”

Decade old idea, but stable & efficient numerical scheme was elusive

Zaletel has developed a variant of the 2D tensor 

network ansatz which allows for efficient 

numerical manipulation:

(a) (b)

(c)

SCIDAC  

collaboration

From “Isometric tensor network states in two dimensions”

M. Zaletel  and F Pollmann, preprint post mid Feb 2019

We demonstrate this algorithm can variationally find 

the ground state of a 2D quantum spin system 

without an exponential blow-up with system size

Energy errors on the order of         / site 

obtained within an hour on single 

workstation
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L x L = system size

Focusing on scaling up implementation, 

“ infinite size” algorithm, & generalizing 

to Hubbard model

arXiv:1902.05100



Algorithmic advances -iPEPS

We develop different variants of infinite projected entangled-pair state 
(iPEPS) ansatz to improve the efficiency of the tensor network. 

In particular, 

(i) we implement strategy to optimize tensors with U(1) symmetry and 
also introduce an optimization method to treat second-neighbor 
interactions more efficiently in full update of tensor.

(ii) For tensor contraction (overlap) calculations, we implement the 
single-layer tensor network based on the corner-transfer matrix 
technique.

(iii) Our benchmark results based on the full-update algorithm in 
comparison with DMRG show that the iPEPS can faithfully represent
different quantum states of infinite systems, including magnetic ordered 
phases, stripe or valence bond solids as well as chiral spin liquids.

Reference 
R. Haghshenas et al., Phys. Rev. B 97, 184436 (2018); R. Haghshenas et al., arXiv:1812.11436.
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Algorithmic advances – DMRG

Various low-level optimizations have been performed

• Using a combination of OpenMP and batch-gemm, take advantage of block sparsity to 
gain speed. 

• Employ more symmetries to gain two orders of magnitude in speed.
For example, we have implemented SU(2) spin rotational symmetry in our new DMRG algorithm,

including pure spin model, t-J and Hubbard models. This allows us to keep 2.7-4 times more

number of states with significantly higher accuracy, and with around 20-100 times faster in speed

Both of these achievements help us to check for better and improved ground state 
convergence.

Next: parallelize to multinodes using high level optimizations.

Aaron Szasz, Johannes Motruk, Michael 

P. Zaletel, Joel E. Moore, arXiv:1808.00463

Hong-Chen Jiang, Zi-Xiang 

Li, Alexander Seidel, Dung-Hai Lee, 

Science Bulletin 63, 753 (2018).
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DMRG single-band Hubbard

4 x Lx Hubbard ladders
(Lx = 16...96)
m = 4K…20K states
Truncation error ~ 10-7

U/t = 8 … 12
t’/t = -0.25 … 0.05
Filling 1/12, 1/10, 1/8 holes

𝐻 = −𝑡 

𝑖𝑗

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈 

𝑖

𝑛𝑖↑𝑛𝑖↓ − 𝑡′  

𝑁𝑁𝑁

𝑐𝑖𝜎
† 𝑐𝑗𝜎

• Quantum phase diagram on 4-leg ladder

• Filled stripe phase  (t’ close 0)

• Luther Emery Liquid phase (t’ = - 0.25t)

• Roles of t’ and U

doped t-J model - four-leg cylinders:
Hong-Chen Jiang, Zheng-Yu Weng, Steven A. Kivelson, PRB 98, 140505 (2018)

John F. Dodaro, Hong-Chen Jiang, Steven A. Kivelson, PRB 95, 155116 (2017)

Hong-Chen Jiang, TPD, arXiv:1806.01465, to appear in Science

Yi-Fan Jiang, Jan Zaanen, TPD, Hong-Chen Jiang, unpublished
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CDW – role of t’

l=1/d

l=1/2d

• Filled stripes
• Large 

amplitude
• Same as 

Zheng et al.

• Half-filled 
stripes

• Smaller 
amplitude
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CDW & spin correlations: ½ filled stripes

wavelength 𝜆 =
1

2𝛿
half hole per unit cell

Quasi-long-range CDW

𝑈 = 12𝑡, 𝑡′ = −0.25𝑡

𝛿 =
1

10
,
1

12

wavelength 𝜆 =
1

𝛿

Exponential decay |𝐹 𝑟 | ∝ 𝑒−𝑟/𝜉𝑠

with 𝜉𝑠~8.5 for 𝛿 = 1/10, 𝜉𝑠~8.3
for 𝛿 = 1/12

𝑛 𝑟 = 𝑛0 + 𝛿𝑛 cos(2𝑘𝐹𝑟 + 𝜙) 𝑟
−𝐾𝐶/2

S.R. White et al., PRB 65, 165122 (2002)
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Superconducting correlations: ½ filled stripes

Pair field correlator

t-J (t’=0)

Power-law decay

Hubbard (t’=-0.25t)

Δ𝛼
† 𝑥, 𝑦 =

1

2
(𝑐 𝑥,𝑦 ,↑
† 𝑐 𝑥,𝑦 +𝛼,↓

† − 𝑐 𝑥,𝑦 ,↓
† 𝑐 𝑥,𝑦 +𝛼,↑

† )

Φ𝛼𝛽(𝑟) =
1

𝐿𝑦
 

𝑦

Δ𝛼
† 𝑥0, 𝑦 Δ𝛽 𝑥0 + 𝑟, 𝑦

d-wave SC (Φ𝑦𝑦 > 0,Φ𝑥𝑦 < 0)
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Luther-Emery liquid: exponents & central charge

• Power law decay CDW and SC correlation 
with exponent 𝐾𝐶 and 𝐾𝑆𝐶

• Luther Emery liquid: 𝐾𝐶 𝐾𝑆𝐶 = 1, single 
gapless mode

Entanglement Entropy: 
𝑆 = −Tr𝜌 ln 𝜌

𝑆(𝑙) =
𝑐

6
ln 𝑙 +  𝑐

𝑐~1.04 for 𝛿 =
1

12
~
1

8

𝑆
𝐿𝑥
2
=
𝑐

6
ln 𝐿𝑥 +  𝑐

𝑈 = 12𝑡

A. Luther and V. J. Emery, PRL 33, 589 (1974)
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Ground state phase diagram: 4 leg ladders

Shaded intermediate regions: phase separation / incommensurate

𝑈 = 12𝑡: 𝛿 =
1

8
:

Luther-Emery:

• Long range CDW 
• Short range pair correlations, no SC 
• Spin gap

Filled Stripe: 

• Quasi-long-range CDW and SC 
• Spin gap
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Ground state phase diagram: 4 leg ladders

Fragile filled stripe phase, unstable when 

• 𝑈 > 10𝑡,  𝑡′ = 0
• 𝑡′ < −0.02𝑡, 𝑈 = 8𝑡

Shaded intermediate regions: phase separation / incommensurate

𝑈 = 12𝑡: 𝛿 =
1

8
:
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Introduction: Exciton Condensation

Exciton condensation

 Exciton can condensate like usual 

boson

Michael S. Fuhrer, Alex R. Hamilton, Physics 9, 80

Bilayer system with opposite doping 

 Electron-hole recombination 

suppress the process

 One possible solution: spatially 

separate electrons and holes

 Bilayer systems with opposite 

doping are ideal for exciton 

condensation study

arXiv:1809.06439

Xuxin Huang, Martin Claassen, Edwin W. 

Huang, Brian Moritz, Thomas P. Devereaux

https://arxiv.org/abs/1809.06439
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Introduction: Model & Method 

 Model: Bilayer Hubbard Model with opposite 

doping 

Layer A

Layer B
 Method: Determinant Quantum Monte Carlo 

(DQMC) 

› Numerically exact; finite temperatures

› Limited by fermion sign problem

› Weight factor                          can be negative 

or even complex for a specific HS field 

configuration

Hubbard-Stratonovich (HS) transformation
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Proof of sign-free regime

 Change variables:

 Continuous HS transformation; introduce HS fields

 No sign problem in the parameter regime

Sign Problem: “Solution”

Strategy

 Sign-free if             has an anti-unitary symmetry     , i.e.

and

 Consider an unconventional anti-unitary symmetry
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Results: SU(4) symmetry point

Measurements

 Excitonic correlation function:

 Biexcitonic correlation function:

 Electron doped layer spin 

correlation function: 

 Electron doped layer charge 

correlation function:

SU(4) symmetry point

 The Hamiltonian has a SU(4) 

symmetry at U=V=5t, μ=0t, where 

it is invariant under:

Exc corr:

Spin corr:
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Results: SU(4) symmetry point

SU(4) symmetry point

 At the SU(4) symmetry point, the spin correlation function is 

equivalent to the excitonic correlation function
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Results: Search for excitonic condensate

 Exciton condensation may be obtained by breaking the U(1) symmetry 

for the conserved charge                           . 

 Due to Mermin-Wagner theorem, such symmetry cannot be broken at 

finite temperature. But it remains possible to achieve quasi-long-range 

order by a BKT transition.

 We need an order parameter breaks the excitonic U(1) symmetry but 

preserves other symmetries of the Hamiltonian.

› Study parameter regime without the SU(4) symmetry

› Study the biexciton condensation order instead of the exciton 

condensation order  

Exciton:

Biexciton:
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Results: Away from SU(4)

 U=5t, V=6t, μ=0t-1.4t

 CDW: charge density wave

 Bi-EC: biexciton condensation

 BI: band insulator

Biexcitonic

correlation function

Charge

correlation function
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Results: 

Superfluid density

 Superfluid density ⍴s can be 

calculated from current-

current correlators 

measured in DQMC.

 Superfluid density and 

biexciton correlation 

function have similar 

behaviors
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Results: 

Determine transition temperature (for U=5t, V=6t and μ=0.5t)

 Method 1: universal jump of superfluid density 

› Approach from below Tc , the following relation is satisfied:

Tc ~ 0.06t
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Results: 

Determine transition temperature (for U=5t, V=6t and μ=0.5t)

 Method 2: finite size analysis of correlation function 

Tc ~ 0.05t



Summary

 A sign-problem-free DQMC algorithm to study bilayer Hubbard model 

with equal but opposite doping in the two layers in the parameter regime 

|U| ≤ V.

 Away from SU(4) point, we find convincing numerical evidence for a 

biexcitonic condensate, which competes with (π, π) charge order at finite 

electron-hole doping.

 We have extracted the BKT transition temperature by two independent 

approaches, with an estimate for Tc ~ 0.05t-0.06t.

arXiv:1809.06439Xuxin Huang, Martin Claassen, Edwin W. 

Huang, Brian Moritz, Thomas P. Devereaux

https://arxiv.org/abs/1809.06439


DMRG Studies of Multi-Component Hubbard 

Models and Higher Spin systems

DMRG Studies of Two-Component Hubbard Models 

for Moire Materials

• Twisted bilayer graphene

• Trilayer graphene-boron nitride with Moire potential

Spin Liquid in Spin-One
Kitaev Material

Koshino et al.(18)



Hubbard U driven transition

Identifying Uc ~3

We consider ¼ filling number
That is one electron per 
unit cell



Robust spin/orbital density wave 

No valley
polarization Future work will study the

interplay of different lattice 
models and  interactions,
and the emergence of
superconductivity
In such systems.
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Thank you.



Biexciton Condensation in 
Electron-hole Doped Hubbard Bilayers

Xuxin Huang, Martin Claassen, Edwin W. Huang, Brian Moritz, Thomas P. Devereaux

7/17/2019
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Chiral spin liquid in the triangular lattice Hubbard model

Model:

Find phase diagram 
with DMRG
• Non-magnetic 

insulating phase! 
(NMI)

Gapless metal

Gapped, 
spin-ordered

Gapped
NMI

Lattice and boundary conditions:

( & larger cylinders)

Aaron Szasz, Johannes Motruk, Michael 

P. Zaletel, Joel E. Moore, arXiv:1808.00463



Reducing exponential complexity

4
N

configurations of interacting fermions

(Exponential Complexity)
DMRG

𝜎 -local basis of dimension d

Environment (L-n site) |𝑗⟩

𝜓 = 

𝑖𝑗

𝜓𝑖𝑗 𝑖 |𝑗⟩

Ground state

𝑖 = 1,… , 𝑑𝑛; 𝑗 = 1, … , 𝑑𝐿−𝑛

Find projection operator An for m-important 

basis when dn or dL-n is too big

𝑖′, 𝑗′ = 1~𝑚; 𝑚 ≪ 𝑑𝑛, 𝑑𝐿−𝑛𝜓 ≈ 

𝑖′𝑗′

𝜓𝑖′𝑗′ 𝑖
′ |𝑗′⟩

𝑖′ 𝑛 = 

𝑖

𝐴𝑛(𝑖
′, 𝑖) 𝑖 𝑛

An=Eigenvector of reduced 

density matrix of m-largest 

eigenvalues



Reducing exponential complexity

Illustration of the tensor network ansatz. The quantum state of the system is encoded

by associating a tensor to each atom. In the 1D network shown here (a “matrix product

state” (MPS)), the tensors are rank-3. The global state is recovered by contracting the

tensors together into a network. Tensors with large dimension “m” can capture more

strongly correlated states, but lead to higher computational costs.
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SciDAC: Topological and Correlated Matter via Tensor 

Networks and Quantum Monte Carlo

This SciDAC proposal outlines a set of major problems in quantum materials that can be

solved if large-scale implementations of tensor networks and DQMC become available.

We link these problems to the major applied mathematics and computational challenges

that need to be overcome. Team members previously developed important methods for

long-range interactions, finite-entanglement scaling, mixed real-space and momentum-

space descriptions, and tensor network skeletonization. If full Hilbert space methods can

be scaled efficiently to 105 or more cores, many of the quantum materials problems of

greatest interest become accessible. Large-scale computation then becomes a powerful

means to understand experiments and differentiate between proposed theoretical scenarios.
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Reducing exponential complexity

4
N

configurations of interacting fermions

(Exponential Complexity)
Im

a
g

in
a

ry
 T

im
e

 (L
=
β
/Δ
τ
“
s
lic

e
s
”
)

Auxiliary Fields

Z=Tr{e
-βH

}

2
NL

configurations

stochastically summed using Metropolis 

importance sampling

(Polynomial Complexity) 

DQMC
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Introduction: Exciton Condensation

Bilayer system with opposite doping 

 Electron-hole recombination 

suppress the process

 One possible solution: spatially 

separate electrons and holes

 Bilayer systems with opposite 

doping are ideal for exciton 

condensation study

Kogar, A., Rak, M., Vig, S., Husain, A., 

Flicker, F., & Joe, Y. et al. (2017).

Exciton condensation

 Exciton can condensate like usual 

boson

 Exciton condensation is recently 

identified by momentum-resolved 

electron energy-loss 

spectroscopy(M-EELS) in the 

transition metal dichalcogenide 

semimetal 1T-TiSe2.
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Finite size effects

• Lx < 48 gives filled stripes Q=2pd

• Lx = 160 gives half filled stripes Q=4pd in bulk, filled stripes at boundary

t-J with p - flux
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Broken SU(2) invariance – not converged

Much larger number of states are required for convergence when t’=0
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Sign-free QMC

Half-filled Landau levels: a continuum and sign-

free regularization for 3D quantum critical points, 

Matteo Ippoliti, Roger S. K. Mong, Fakher F. Assaad

and Michael P. Zaletel, Phys. Rev. B 98, 235108.

This work shows how Landau Level models can be 

used to implement sign-free determinantal quantum 

monte carlo studies of different phase transitions in 

frustrated magnets, such as the long studied Neel-

VBS transition of the 2D Heisenberg model or the 

Kekule instability of monolayer graphene. Exponents 

of the critical point can be obtained.

Can be applied to study 2+1 dimensional conformal field theories and 
deconfined quantum critical points, where little is known.

Comparisons of DMRG and QMC



Scientific Achievement 
By improving the algorithm, we demonstrate 

that tensor network can identify and 

characterize different frustrated systems 

including gapped chiral spin liquid.

Significance and Impact 
Advancement in tensor network algorithm 

allows accurate simulations of strongly 

correlated quantum states of infinite systems.

Research Details
– We successfully apply U(1) symmetry, and corner 

transfer matrix method combined with one-layer 
contraction to spin systems, obtaining reliable 
quantum phase diagrams. 

– We demonstrate that such tensor network can also 
faithfully represent time reversal symmetry breaking 
chiral spin liquid with the increase of the bond 
dimension.

Tensor Network Algorithm for Two Dimensional Spin Systems 

Caption:  Top row shows the Tensor-network and its 
environment tensors.  Middle row shows the accuracy
in comparison to DMRG. The bottom raw illustrates 
identified order parameters for different quantum phases.

Work was performed at CSUN under the support of the DOE Contract No. DE-
AC02-76SF00515 through SLAC National Accelerator Laboratory. 

Reference 
R. Haghshenas et al., Phys. Rev. B 97, 184436 
(2018); R. Haghshenas et al., arXiv:1812.11436.


