SciDAC PI Meeting, July 26-18, 2019

Partnership Center for High-fidelity Boundary Plasma Simulation (HBPS)

C.S. Chang¹,

Physics: S. Parker², Y. Chen², R.M. Churchill¹, D. Curreli¹², N. Ferraro¹, M. Greenwald³, R. Hager¹, A. Hakim¹, G. Hammett¹, S. Ku¹, G. Wilkie¹

Computer Science: S. Klasky⁶, J. Choi⁶, W. Hoffman¹⁰

Performance Engineering: E. Dazevedo⁶, P. Worley¹¹

and the HBPS Team

¹PPPL, ²U. Colorado, ³MIT, ⁴LANL, ⁵LBNL, ⁶ORNL, ⁷LLNL,

⁸U. Texas, ⁹RPI, ¹⁰Kitware, ¹¹PHWorley, ¹²U. Illinois

ALCF
• HBPS team leaders and the project OV
• The XGC gyrokinetic code
 – Performance enhancement
• Example scientific discoveries last year
 – Turbulence interaction with external magnetic perturbation
 – Further investigation of ITER’s divertor heat-flux width
• Getting ready for WDM integration
• Collaboration with FASTMath and RAPIDS
 – FASTMath: M. Shephard, J. Hittinger
 – RAPIDS: S. Klasky, W. Hoffman
• Conclusion and discussion

+Funding provided by US DOE FES and ASCR via SciDAC-4
*Computational resources provided by INCITE (OLCF, ALCF) and NERSC
Center for High-fidelity Boundary Plasma Simulation

(High-fidelity gyrokinetic simulation of the global BD plasma)

ASCR’s Enabling Technology

- **Production Component**
 - XGC + DEGAS2* + M3D-C1† + hPIC#
 - L-H transition
 - Pedestal shape
 - ELM control
 - Divertor heat-flux width
 - Neutral particles and Impurities
 - Sheath physics and integration with PMI
- **Developmental Component**
 - GEM + GENE
 - E&M turbulence in omnigeneous B
 - Cross-verification & instruction component
 - Continuum GK edge code
 - Gkeyll
 - Developmental component

DEGAS2 is coupled into XGC as a subroutine.
The XGC Gyrokinetic Code

• Particle-in-Cell, with added continuum technology
• In contact with material wall
 – Far-from-equilibrium (non-Maxwellian)
 – Neutral recycling, impurity sputtering
• Magnetic X-point and separatrix (one poloidal B winding → infinite distance)
 – Unconfined X-point orbit loss from pedestal
• Multi-scale, multiphysics in space-time
• Unstructured triangular mesh
• PETSc (only ~2% of total compute time if done right)
• Large simulation-size (≥10k particles per grid-vertex) per time-step → ~ trillion particles for ITER
• Total-f XGC has been developed to study this kind of plasma
• XGC is not only a SciDAC code, but also an ECP code
• Summit-ESP, Aurora-ESP, NESAP, and INCITE
XGC performs well on world #1 Summit

[E. D’Azevedo, A. Scheinberg, P. Worley, S. Ku, R. Hager, S. Slattery]

- XGC utilizes Kokkos for “future proofing,” a programming model written in C++
 - Fortran interface has been developed for XGC via Cabana particle library
- Single version XGC can be performance portable not only to Summit and KNL, but also to different future architectures: Permutter, Aurora, Frontier

CPU only

CPU + GPU

Asynchronous Work-load split: 15X faster

XGC1 Performance: Weak scaling by number of planes using 1M vertex mesh (9.7K ions, 9.7K electrons per cell; 32 Summit nodes per plane)

- Original version
- Kokkos version
- Lower is better
- 50M electrons/GPU
- 2.4T ions and electrons on 90%
- SUMMIT
 - 42 CPU cores per node
 - 4-way SMT per core
 - 6 GPUs per node
- using CUDA Fortran and OpenACC
- using CABANA and OpenACC

Compute Nodes

Avg. Sec. per Timestep

- 500 to 4500

Number of Planes

- 500 to 4500

50M electrons/GPU

2.4T ions and electrons on 90%

SUMMIT

- 42 CPU cores per node
- 4-way SMT per core
- 6 GPUs per node

Using CUDA Fortran and OpenACC

Using CABANA and OpenACC
Example Scientific Discoveries last year enabled by SciDAC Institute collaborations
For the first time, the XGC code enabled total-f gyrokinetic simulation of RMP-neoclassical-turbulence-neutral interaction in diverted geometry

[R. Hager, 2019 APS-DPP Invited Talk]

Two big puzzles seen in the experimental RMP-driven edge transport:
1. Why is there the density pumpout?
2. How could an electron heat-barrier co-exist with density pumpout?

Puzzle 3: These two experimental observations are completely opposite to the existing “well-established” analytic model on stochastic transport [Rechester-Rosenbluth].

1. Convective density loss
2. Confinement in diffusion channel
3. Shallowing of E_r well

All three need to be explained together.
For the first time, XGC succeeded in the total-f gyrokinetic simulation of RMP-neoclassical-turbulence-neutral interaction in diverted geometry

[R. Hager, 2019 APS-DPP Invited Talk]

- Finds enhanced micro-turbulence is responsible for the density pump-out in the M3D-C1 RMP field, not neoclassical as conjectured previously.
- Finds that the RMP-interacted turbulence preserves the electron heat barrier around \(\Psi_N \approx 0.96-0.98 \).
- Finds that the \(E_r \)-well shallows.
- Finds that the divertor heat-flux width widens by \(\sim 30\% \) by RMPs, as seen in experiments.
Answering the critical question on the (non)existence of pedestal in the target ITER plasma

- ITER’s goal of achieving 10-fold energy production relies on the existence of high enough edge pedestal (H-mode), as ubiquitously obtained in today’s tokamak experiments.
- There is a concern that, due to the much greater physical size, the background ExB flow may be too weak to shear away the edge turbulence.
 - Edge turbulence could become too strong to support the edge pedestal.
- We find that the (electrostatic) turbulence self-organization with the background slope, in the presence of X-point orbit-loss, keeps ITER’s edge pedestal still high.

 - We will continue the big runs (computing time could be an issue).
 - Next question: How will the pedestal be modified by electromagnetic turbulence?
Further investigation of the ITER divertor heat-flux width

<table>
<thead>
<tr>
<th>Shot</th>
<th>R (cm)</th>
<th>a (cm)</th>
<th>I_P (MA)</th>
<th>B_{pol,OM} (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSTX 132368</td>
<td>85</td>
<td>57</td>
<td>0.7</td>
<td>0.20</td>
</tr>
<tr>
<td>DIII-D 144977</td>
<td>169</td>
<td>55</td>
<td>1.0</td>
<td>0.30</td>
</tr>
<tr>
<td>DIII-D 144981</td>
<td>169</td>
<td>55</td>
<td>1.5</td>
<td>0.42</td>
</tr>
<tr>
<td>C-Mod 1100223026</td>
<td>66</td>
<td>24</td>
<td>0.5</td>
<td>0.50</td>
</tr>
<tr>
<td>C-Mod 1100223012</td>
<td>66</td>
<td>24</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>C-Mod 1100212023</td>
<td>66</td>
<td>24</td>
<td>0.9</td>
<td>0.81</td>
</tr>
<tr>
<td>C-Mod (high B)</td>
<td>69</td>
<td>20</td>
<td>1.4</td>
<td>1.11</td>
</tr>
<tr>
<td>JET 79692</td>
<td>303</td>
<td>91</td>
<td>4.5</td>
<td>0.89</td>
</tr>
<tr>
<td>ITER</td>
<td>620</td>
<td>199</td>
<td>15</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Further investigation of the ITER divertor heat-flux width

• The XGC-predicted divertor heat-flux width λ_q has been well-validated

• Why λ_q(XGC, ITER) >6X wider than λ_q(Eich)?
 – To check if it is a pure size effect or B_{pol} effect, a lower B_{pol} ITER and a highest B_{pol} C-Mod case simulated → No is the answer.

• Community question: How come such a strong difference at similar B_{pol}?

• The suspect “ρ_i/a effect” remains: Texas [Kotschenreuther], PPPL [Chang]
 • If we correct the B_{pol} dependence to $B_{pol} (a/\rho_i)$ dependence, there is a long distance between the high B_{pol} C-Mod to full current ITER.

If we include the a/ρ_i effect, there is a long distance between C-Mod and ITER
Evidence for different edge physics between higher and lower ρ_i/a values.

In all the higher ρ_i/a tokamaks, including low-current ITER, edge turbulence across the separatrix is blob type and the ExB shearing rate is high. In the high-current ITER, the turbulence is streamer type and the ExB shearing rate is low across the separatrix.
Unlike the blobby turbulence, the full-current ITER contains a strong non-adiabatic electron response across the magnetic separatrix, as evidenced by a large phase difference between density and potential fluctuations ($\gtrsim \pi/2$) and a strong de-correlation between their amplitudes.
XGC-hPIC Coupling: enabling WDM integration with material codes (U. Illinois, PPPL, ORNL, RAPIDS, FASTMath)

- Coupling via ADIOS-2/EFFIS
- hPIC (6D full-orbit PIC) allows to account for gyro-orbits near material surface, where a plasma sheath and a magnetic presheath are formed
- The 5D Gyro-Center distributions provided by the XGC code are converted into full 6D distributions and fed in as input to hPIC
- hPIC provides the Energy-Angle distributions of the ions across the sheath before they impact on the surface, a necessary input for material codes evaluating sputtering and reflection of the plasma particles at the surface (e.g. Fractal-TRIDYN, etc.)
- Next Steps: Porting to GPUs and Testing of coupled codes on HPC
Collaboration with FASTMath
FASTMath(1): Meshing tool (M. Shephard)

- XGC uses unstructured triangular mesh due to separatrix and wall:
 - Mesh quality affects the simulation quality
 - Before the meshing by FASTMath, the meshing was performed manually.
 One case took a few days, but still overlooking details at many areas
 - M. Shephard developed an automated tool, by working with physicists

Last year, FASTMath enabled more accurate XGC solution by
- Improving mesh quality where flux curves interact with reactor wall
- Improving mesh gradation around the magnetic x-point
- Reordering mesh data for better memory access
PUMIpic: Parallel Unstructured Mesh PIC

- Mesh centric – no independent particle structure
- Particle migration and load balancing between pushes
- Focused on structures for execution on GPUs
 - Omega GPU-ready mesh-topology being integrated
- Since most of data structures are changed, XGC is rewritten in C++
- Test shows on-par performance using less memory

<table>
<thead>
<tr>
<th>ptcls (Ki)</th>
<th>no sorting time (s)</th>
<th>full sorting time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>2.298661</td>
<td>3.642041</td>
</tr>
<tr>
<td>256</td>
<td>2.895464</td>
<td>3.415048</td>
</tr>
<tr>
<td>512</td>
<td>3.79263</td>
<td>3.851178</td>
</tr>
<tr>
<td>1024</td>
<td>4.972283</td>
<td>4.090044</td>
</tr>
<tr>
<td>2048</td>
<td>7.089673</td>
<td>4.389198</td>
</tr>
<tr>
<td>4096</td>
<td>11.578984</td>
<td>4.799475</td>
</tr>
</tbody>
</table>

Ion turbulence from XGC-PUMIpic in tokamak geometry on a highly coarse-grained mesh
FASTMath(3): New 3D solver (M. Adams)

Chacon’s fully implicit electromagnetic scheme implemented in XGC
• All the previous production runs were with electrostatic turbulence
• Summit is now powerful enough for electromagnetic simulation

- For electrostatic turbulence
 XGC used 2D solver + finite differencing in the third direction
- The EM scheme requires fully 3D solver
 • Implicit iteration requires efficient solver
 • PETSc/GMRES is used
- Significant effort invested in reducing iteration #
- Machine learning is being explored to optimize the preconditioner [J. Hittinger, R. Archbald]

Iteration count is low enough for production on Summit [B. Studervant, L. Chacon]
Other on-going collaborations with FASTMath

- Machine learning for preconditioner: *J. Hittinger and R. Archbald*
- Nonlinear Fokker-Planck collision operator that is more efficient and WDM-ready than the N^2 operation currently used in XGC: *Mark Adams*
- Method of Manufactured Solution for PIC solution to Vlasov-Poisson equation: *J. Hittinger, L. Ricketson, P.J. Tranquilli*
 - Expanded and corrected previous work by Riva et al. [Phys. Plasmas 2017]
 - Demonstrated implementation with 2D Vlasov-Poisson
Collaboration with RAPIDS
RAPIDS(1): Big data I/O (S. Klasky)
I/O was a big concern for XGC. ADIOS changed it to “No Concern.”

- ITER simulation produces ~20TB restart data per hour using ½ Summit.
 - Takes < 1 minute for writing on GPFS
 - Takes ~ 1 sec for writing on NVMe
- ADIOS is fast enough to write out 50PB a day for XGC, but way too big for GPFS → In situ, streaming data analysis is in progress.

XGC Checkpoint Writing on Summit
GPFS with I/O aggregation

Summit NVMe

Throughput (GB/sec)

Nodes

Throughput (GB/sec)

Number of Nodes
RAPIDS(2): Code coupling (S. Klasky)

- XGC is coupling with
 - the MHD code M3Dc1 for
 - magnetic equilibrium reconstruction as pedestal buildup
 - edge localized mode crash of the pedestal
 - the plasma-wall interaction code hPIC for
 - Plasma influx to the surface
 - Particle outflux from the surface
 - As described in the physics slides

- ADIOS enables code couplings
 - Coupling manager
 - In-situ staging
 - In-situ visualization
 - Coupling performance monitoring
 - Heterogeneous memory/process utilization
XGC asynchronously offloads the analysis computations to designated processors via ADIOS.

ADIOS enables:
- In-memory analysis
- Inter-network analysis
- WAN-coupled analysis

Diagram:
- **XGC1 original**
 - XGC1
 - F Analysis
 - Calc1
 - Reduce1
 - Calc2,3
 - Reduce2
 - Calc4
 - Reduce3
 - Write

- **XGC1 modified**
 - XGC without F analysis
 - F Put
 - Adios Push
 - IMPI SST

- **F-analysis**
 - F Analysis
 - Calc1
 - Reduce1
 - Calc2,3
 - Reduce2
 - Calc4
 - Reduce3
 - Write

Maximize Data Locality

XGC1 on 1024 summit nodes with 9X analysis computations

- XGC1- original
- XGC1- modified
- F-analysis

23
Example Data Analysis Code of XGC1 Turbulence

I. Keramidas¹, J. Myra², S. Parker¹
Univ. of Colorado¹, Lodestar Corp.²

• One XGC1-run requires 10^{17} flop-hrs
• Enormous scientific interest in the data
• Powerful data science tools are widely available

Detailed analysis of neoclassical and turbulent particle fluxes

Turbulent particle flux at the last closed flux surface is shown

Other collaborations with RAPIDS

- Software process (Hoffman/Galbreath, Kitware)
 - Continuous Integration (CI) testing system
 - Incorporate a modern CMake build
 - Git workflow incorporated with CI
 - Integrate CDash into github

- EFFIS (Klasky, ORNL): End-to-end Framework for Fusion Integrated Simulation
 - Initial development in SciDAC-2 CPES (PI: Chang)
 - Integrated platform of services to compose, launch, monitor, analyze, and control coupled applications on all leadership HPCs
 - High Performant I/O for coupled codes
 - Process placement (inter or intra node)
 - Online dashboard functionality

Example EFFIS specification file

```bash
run:
  xgc:
    processes: 1024
    processes-per-node: 32
    path: xgc-build/xgc1-es

groups:
  diagnosis.1d:
    plot:
      psi-plot:
        x: psi
        y: i_gc_density_1d
```

CDash

EFFIS

Submit

Compose

Monitor

Communicate

Provenance

Toolkit

XGC1

XGCa

M3DC1

hPIC

Matlab

Visit

Paraview

Python

ADIOS

BPFile

SST

IMPI

SST-SP

HDFS

IMPI
Summary

• HBPS is making scientific discoveries that would not have been possible without the SciDAC framework and the US Leadership Class Computers
 Since last SciDAC Conference
 – Many Invited/Plenary Talks at major scientific conferences, including Smokey Mt 2018, IAEA-FEC 2018, APS-DPP 2019, International Data Driven Plasma Sciences 2019, KSTAR 2019, PACS 2019, + many more
 – 7 SciDAC-funded physics papers + many ASCR papers, (co-authored)
• Strong collaboration with FASTMath and RAPIDS in many subjects
• Other ASCR collaborations outside of SciDAC Institutes also strong
 o R. Moser (Texas): UQ, Multifidelity Monte Carlo (MFMC) methods
 o L. Chacon (LANL): math leadership
 o V. Carey (U. Colorado Denver): particle re-sampling
 o C. Hauck (ORNL): super time-stepping
• Preparation for WDM coupling with most Fusion SciDACs
• AI/ML is becoming an important part of the project
 • In-situ data analytics
 • Validation
 • Simulation acceleration
 • Anchored ML for prediction, by adding high-fidelity simulation data