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AToM (2017-2022) Research Thrusts

• AToM0 was a 3-year SciDAC-3 project (2014-2017)
• AToM is a 5-year SciDAC-4 project (2017-2022)
• 6 thrusts address code integration and workflow management:

1 AToM environment, performance and packaging
2 Physics component integration
3 Validation and uncertainty quantification
4 Physics and scenario exploration
5 Data and metadata management
6 Liaisons to SciDAC partnerships
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Outline of this talk

Please note

• Skip many introductory slides presented in previous years

• Skip energetic particle, edge kinetic (COGENT), RF, IPS activities
• Focus on present integration activities
• For past presentations see:

scidac.github.io/atom/literature.html
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Outline of this talk

1 Project scope and vision
2 Data management: OMAS and IMAS
3 Examples of fast-prediction workflows
4 Merging and regression
5 Fidelity hierarchy
6 Fusion simulation use cases
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Project scope and vision
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AToM Modeling Scope and Vision

Present-day tokamaks

DIII-D

Upcoming burning plasma

ITER

Future reactor design

DEMO
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AToM Conceptual Structure

1 Access to experimental data
2 Outreach (liaisons) to other SciDACs
3 Verification and validation, UQ, machine

learning
4 Support HPC components
5 Framework provides glue
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AToM Conceptual Structure

1 Access to experimental data
2 Outreach (liaisons) to other SciDACs
3 Verification and validation, UQ, machine

learning
4 Support HPC components
5 Framework provides glue

Adapted from Fig. 24 of
Report of the Workshop on Integrated Simulations for
Magnetic Fusion Energy Sciences (June 2-4, 2015)
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Data management: OMAS and IMAS

24 Candy/SciDAC-PI/July 2019 AT M



ITER Integrated Modeling and Analysis Suite (IMAS)
Data schema and storage infrastructure to support ITER operations

• ambitious European effort to build a standard fusion format
• IMAS data schema: Interface Data Structure (IDS)

− Data organized into 48 IDSs (tree) for different physics
− Store both experimental and simulated data

• IMAS storage infrastructure: Access Layer (AL)
− Layer that passes data between components and to/from storage
− C/C++, Fortran (F95), Java, Matlab, Python

• Significant effort underway to make IMAS a standard
− ITER data will be available only through IMAS
− European tokamaks making notable progress adopting IMAS
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IMAS is challenging for developers

1 access layer (AL) tightly linked to data-schema
2 requires recompile of IMAS and components for each data-schema release
3 proposed new HDC API to be independent of data-schema
4 IMAS infrastructure is heavy, and hard to install and manage
5 API does not provide any useful functionality besides data storage
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Solution: do not rely exclusively on IMAS

• Shortcomings and evolving IMAS infrastructure demand a solution
− want to decouple AToM environment from IMAS
− want to ensure IMAS compatibility

• Solution:

OMAS
− python package to organize data in compliance with IMAS schema
− fast, stable, portable
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Simplified use of IMAS through OMAS (O. Meneghini, S. Smith)
via access to ITER IMAS database (requires ITER account)
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OMFIT classes .to omas() and .from omas()
provide an effective way to simplify code integration

OMAS+

Mapper

Many legacy codes share the
same file formats
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Open source: pip install omas
documentation at http://gafusion.github.io/omas
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OMFIT STEP module (O. Meneghini, others)
IMAS-compliant modeling workflows

• OMFIT STEP module

• couples components (steps) to support
workflows

− open-loop prediction
− control
− optimization

• Data exchanged between steps via OMAS
• Can write data to IMAS at any stage
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TRANSP Collaboration (J. Sachdev, B. Grierson)
PPPL support of AToM/GACODE

• AToM seeks synergy with TRANSP usage
• PPPL staff assist with

− maintenance of TRANSP OMFIT module
− development of the Plasma State code including OMAS/IMAS translators

• AToM reduced model development feeds into TRANSP
• TRANSP modules to be deployed via git, accessible by community

− PSPLINE - nearly complete
− Plasma State - ongoing investigation
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TRANSP Collaboration
PPPL support of AToM/GACODE
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Examples of fast-prediction workflows
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Tokamak physics spans multiple space/timescales
Core-edge-SOL (CESOL) region coupling
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AToM OMFIT-TGYRO CE(sol) ITER prrdictions
impurities (Zeff) improve performance despite core dilution
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AToM IPS-FASTRAN CESOL is being Extended to Wall (JM. Park)
2D Impurity transport in entire tokamak volume
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• FASTRAN (core)
• C2 (edge-SOL)
• Extending C2 mesh to wall
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Fast predictive capability 1: TAUENN (J. McClenaghan)
(0+ε)-D capability

• Equilibrium and sources based on input
global parameters:

R, a, BT, Ip, ne,ped, Paux, κ, δ, q0, Zeff

• Pedestal shape (r = rped) from EPED-NN:
Set αEPED

• Core shape (r = 0.6a) from TGLF:
Set αTGLF

• Match TGLF flux at r/a = 0.6

q = q0 + (q95 − q0)(r/a)2

q95 = 5a2BS/(RIp)

κ = κo + (κs − κ0)(r/a)2

δ = δs(r/a)
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Fast predictive capability 1: TAUENN (J. McClenaghan)
Performance relative to power-law fit

,98y2 ,NN

Power law �t to experimental data τe,NN theory-based prediction

45 Candy/SciDAC-PI/July 2019 AT M



Fast predictive capability 1: TAUENN (J. McClenaghan)
Performance relative to power-law fit

,98y2 ,NN

Power law �t to experimental data τe,NN theory-based prediction

ITER
steady

stateITER
baseline ITER

baseline

46 Candy/SciDAC-PI/July 2019 AT M



Fast predictive capability 2: MODEL-PROFILES (J. Kinsey)
1D model: scaling law plus fast equilibrium/heating

• Rapid equilibrium/profile estimation
• Data exchange:

GACODE expro interface
• Sources:

Ohmic, NBI, radiation
• Equilibrium:

VMOMS
• Profiles:

− Rotation (DeGrassie), scaling
(Thomsen-Cordey)

• Compute time less than 30 seconds

Workflow diagram

Modelprofiles VMOMS NBEAMS 

GETFFP 
  PP’ & FF’ 
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NEO 
 J_BS 

FREYA 
   J_NB 
FREYAYY
   J_NB 

UPCUR 
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0D Data 
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Merging and regression
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OMFIT Update Workflow (R. Kalling)
OMFIT is mission-critical and complex
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OMFIT Update Workflow (R. Kalling)
Automatic regression and update

• The automerge branch allows trusted developers to integrate features with a greatly
reduced risk of broken code being distributed
• The regression test system uses a labeling mechanism to exclude tests that are not

appropriate for a given test environment
− for example, no gui, or a specific server not being available

• Regression test system automatically selects relevant tests given code changes in a
commit to reduce testing time
• Automatic package rebuild/upload allows installations to stay up-to-date whenever

a developer changes OMFIT dependency requirements
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Fidelity hierarchy

Key theme for the future of whole-device modeling
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Fidelity Hierarchy is CRITICAL
Range of models from leadership codes to REDUCED MODELS

Leadership-class computing
highest �delity simulations

Calibrate

Reduced models for validation

Machine-learning models for
optimization & real-time control

Train

One-o� heroic simulation

Inform

Inform

Physics
Validation

Physics
Application

Physics
Development
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CGYRO ITER Baseline Simulation (N. Howard, C. Holland)
Electron-ion multiscale resolution

• kxρi 6 92, kyρi 6 54
• Highest GK resolution ever
• 280M core hrs on Titan
• ∆t: 220K FFTs of length 5.6M
• 500K ∆t
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Microtearing Turbulence (X. Jian, C. Holland)
Discovery of MTM-driven transport in high-βp discharges

DIII-D
H-mode ITG
δφ

DIII-D
High βp MTM

δA‖

DIII-D
H-mode MTM
δA‖
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Performance on Leadership Systems (I. Sfilogoi, G. Fann)
GPU systems lack compute-communicate balance of CPU systems
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• LEFT: 6-platform (3 CPU + 3 GPU) strong-scaling comparison
• RIGHT: kernel-level analyses (compute time, communicate time)
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OpenMP performance on KNL
High throughput/productivity on Cori
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• Significant loop-level work (for OMP) left after MPI distribution
• Excellent scaling up to 64 OpenMP threads on Cori
• Hundreds of CGYRO database runs completed in 2019 −→ reduced model
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GPU Performance (via cuFFT and GPUDirect MPI)
New Optimizations by Igor Sfiligoi (SDSC)

• Expensive kernels (nl,coll) remarkably fast on GPU
• Summit has GPUDirect MPI bug (IBM Spectrum MPI, libcoll complex)
• Underway: embedded/adaptive timestepping (G. Fann, ORNL)
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Next level of fidelity hierarchy: TGLF
Centerpiece of all AToM predictive modeling workflows

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)

• Determines quality of profile prediction
• TGLF is the heart of AToM profile-prediction capability

− linear gyro-Landau-fluid eigenvalue solver
− coupled with sophisticated saturation rule
− evaluate quasilinear fluxes over range 0.1 < kθρi < 24

• Saturated potential intensity
− derived from a database of nonlinear GYRO simulations
− database resolves only long-wavelength turbulence: kθρi < 1

• 107 times faster than nonlinear gyrokinetics

61 Candy/SciDAC-PI/July 2019 AT M



Next level of fidelity hierarchy: TGLF
Centerpiece of all AToM predictive modeling workflows

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
• Determines quality of profile prediction

• TGLF is the heart of AToM profile-prediction capability
− linear gyro-Landau-fluid eigenvalue solver
− coupled with sophisticated saturation rule
− evaluate quasilinear fluxes over range 0.1 < kθρi < 24

• Saturated potential intensity
− derived from a database of nonlinear GYRO simulations
− database resolves only long-wavelength turbulence: kθρi < 1

• 107 times faster than nonlinear gyrokinetics

62 Candy/SciDAC-PI/July 2019 AT M



Next level of fidelity hierarchy: TGLF
Centerpiece of all AToM predictive modeling workflows

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
• Determines quality of profile prediction
• TGLF is the heart of AToM profile-prediction capability

− linear gyro-Landau-fluid eigenvalue solver
− coupled with sophisticated saturation rule
− evaluate quasilinear fluxes over range 0.1 < kθρi < 24

• Saturated potential intensity
− derived from a database of nonlinear GYRO simulations
− database resolves only long-wavelength turbulence: kθρi < 1

• 107 times faster than nonlinear gyrokinetics

63 Candy/SciDAC-PI/July 2019 AT M



Next level of fidelity hierarchy: TGLF
Centerpiece of all AToM predictive modeling workflows

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
• Determines quality of profile prediction
• TGLF is the heart of AToM profile-prediction capability

− linear gyro-Landau-fluid eigenvalue solver
− coupled with sophisticated saturation rule
− evaluate quasilinear fluxes over range 0.1 < kθρi < 24

• Saturated potential intensity
− derived from a database of nonlinear GYRO simulations
− database resolves only long-wavelength turbulence: kθρi < 1

• 107 times faster than nonlinear gyrokinetics

64 Candy/SciDAC-PI/July 2019 AT M



Next level of fidelity hierarchy: TGLF
Centerpiece of all AToM predictive modeling workflows

• Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
• Determines quality of profile prediction
• TGLF is the heart of AToM profile-prediction capability

− linear gyro-Landau-fluid eigenvalue solver
− coupled with sophisticated saturation rule
− evaluate quasilinear fluxes over range 0.1 < kθρi < 24

• Saturated potential intensity
− derived from a database of nonlinear GYRO simulations
− database resolves only long-wavelength turbulence: kθρi < 1

• 107 times faster than nonlinear gyrokinetics

65 Candy/SciDAC-PI/July 2019 AT M



TGLF
Ongoing calibration with CGYRO leadership simulations

• Theory-based approach – must be calibrated with nonlinear simulations
• Predictions validated with ITPA database
• Discrepancies: L-mode edge, EM saturation
• CGYRO multiscale simulations needed
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Fusion simulation use cases

67 Candy/SciDAC-PI/July 2019 AT M



AToM Use Cases (C. Holland, P. Bonoli, others)
Coordination of validation/physics studies

• Observation
− Most every modeling effort eventually settles on certain set of inputs

− these inputs provide benchmark points for regression testing and physics studies
− can be, but not necessarily, drawn from actual experiments

• Plan
− organize AToM validation and scenario modeling work about uses cases
− provide comprehensive, organized, documented datasets
−

• Long-term vision
− development use cases through iterative process
− start simple and grow as needed by maturity of physics and validation workflows
− will grow to provide a community knowledge-base
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AToM Use Cases
Tentative examples
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