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AToM (2017-2022) Research Thrusts

e AToM? was a 3-year SciDAC-3 project (2014-2017)
® AToM is a 5-year SciDAC-4 project (2017-2022)
® 6 thrusts address code integration and workflow management:
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0 Liaisons to SciDAC partnerships
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Outline of this talk

Please note

¢ Skip many introductory slides presented in previous years
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Outline of this talk

Please note

Focus on present integration activities

For past presentations see:

scidac.github.io/atom/literature.html J
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Outline of this talk

@ Project scope and vision
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Outline of this talk

® Data management: OMAS and IMAS
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Outline of this talk

® Examples of fast-prediction workflows
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Outline of this talk

O Merging and regression
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Outline of this talk

@ Fidelity hierarchy
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Outline of this talk

0@ Fusion simulation use cases
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Project scope and vision
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AToM Modeling Scope and Vision

Present-day tokamaks  Upcoming burning plasma  Future reactor design
DIII-D ITER DEMO

18
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AToM Conceptual Structure

@ Access to experimental data
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® Outreach (liaisons) to other SciDACs
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AToM Conceptual Structure

@ Access to experimental data
® Outreach (liaisons) to other SciDACs

@® Verification and validation, UQ, machine
learning

Verification
& Validation
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AToM Conceptual Structure

@ Access to experimental data
® Outreach (liaisons) to other SciDACs

@® Verification and validation, UQ, machine
learning

O Support HPC components

Verification
& Validation
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AToM Conceptual Structure

SOL

@ Access to experimental data
® Outreach (liaisons) to other SciDACs

@® Verification and validation, UQ, machine
learning

O Support HPC components
WDM

Framework
& Reduced
Models

® Framework provides glue

/3 Adapted from Fig. 24 of
/’G’r/,he Report of the Workshop on Integrated Simulations for
K Magnetic Fusion Energy Sciences (June 2-4, 2015)

Verification
& Validation

ATSM
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Data management: OMAS and IMAS
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ITER Integrated Modeling and Analysis Suite (IMAS)

Data schema and storage infrastructure to support ITER operations

ambitious European effort to build a standard fusion format
IMAS data schema: Interface Data Structure (IDS)

- Data organized into 48 IDSs (tree) for different physics
— Store both experimental and simulated data

IMAS storage infrastructure: Access Layer (AL)

Layer that passes data between components and to/from storage
- C/C++, Fortran (F95), Java, Matlab, Python

Significant effort underway to make IMAS a standard

— ITER data will be available only through IMAS
European tokamaks making notable progress adopting IMAS
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IMAS is challenging for developers
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IMAS is challenging for developers

i = 1 b
@ access layer (AL) tightly linked to data-schema

® requires recompile of IMAS and components for each data-schema release
® proposed new HDC API to be independent of data-schema

O IMAS infrastructure is heavy, and hard to install and manage

® API does not provide any useful functionality besides data storage
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Solution: do not rely exclusively on IMAS

® Shortcomings and evolving IMAS infrastructure demand a solution

- want to decouple AToM environment from IMAS
- want to ensure IMAS compatibility
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Solution: do not rely exclusively on IMAS

® Shortcomings and evolving IMAS infrastructure demand a solution

- want to decouple AToM environment from IMAS
- want to ensure IMAS compatibility

UMAS

- python package to organize data in compliance with IMAS schema
fast, stable, portable

® Solution:
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Simplified use of IMAS through OMAS (O. Meneghini, S. Smith)

via access to ITER IMAS database (requires ITER account)

import omas
ods = omas.load_omas_iter_scenario(shot=130010, run=1)
plot( ods['core_profiles']['profiles_1d'][256]['electrons']['pressure'] )

< ods P code b 252 conductivity_parallel density
b core_profiles I global_quantities b 253 b e_field density_fast
b core_sources I ids_properties b 254 e_field_parallel density_thermal
b core_transport P> profiles_1d b 255 b electrons pressure
b dataset_description time b grid pressure_fast_parallel
b equilibrium b vacuum_toroidal_field 525 b ion pressure_fast_perpendicular
b info b 258 j_bootstrap temperature
P pulse_schedule b 259 j_non_inductive
b summary b 260 j_ohmic
> transport_solver_numerics b 261 j_tor
vee j_total
4.0X10° magnetic_shear
momentum_tor
n_i_total_over_n_e
3.2 I neutral
pressure_ion_total
. pressure_parallel
n_“fZ 4 pressure_perpendicular
g pressure_thermal
2
¢ 1.6 ? i_averag
a 1 ge
time
zeff
0.8
0'8.0 0.2 0.4 0.6 0.8 1.0
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OMEFIT classes .to_omas() and . from omas()

provide an effective way to simplify code integration

QVFIT + OMAS

from omfit.classes.omfit_eqdsk import OMFITgeqdsk, OMFITsrc
from omas import *

# read gEQDSK file in OMFIT
eq = OMFITgeqdsk(OMFITsrc + '/../samples/g133221.01000')

# convert gEQDSK to OMAS data structure
ods = eq.to_omas()

# save OMAS data structure to IMAS
paths = save_omas_imas(ods, tokamak='DIII-D', new=True)

# load OMAS data structure from IMAS
odsl = load_omas_imas(user, tokamak='DIII-D', paths=paths}

# generate gEQDSK file from OMAS data structure
_b eql = OMFITgeqdsk('g133221.02000").from_omas(odsl)

# save gEQDSK file

/ eql.deploy()
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Open source: pip install omas

documentation at http://gafusion.github.io/omas

® (0 installation — OMAS x  +
<« C @ https://gafusion.github.io/omas/install.htm! * & S o w @&
UHHE Concept Examples Installation ITER OMFIT Dataschema APl In this page ~

Installation Google  omasins Q

OMAS runs both with Python2 and Python3.

Pypi: To install OMAS with pip (for users);
pip install —upgrade omas

where upgradeis used to update the omas installation to the latest version.

The development version of omas can also be installed with pip:
pip install —-upgrade e git+git@github.com:gafusion/omas#egg=omas
Conda: To install OMAS with conda (for users):

conda install —c conda-forge omas
conda update ~-c conda-forge omas

GitHub To clone OMAS from GitHub (for developers):

git clone git@github.com:gafusion/omas.git

cd omas
sudo pip install —upgrade -e . [build_structures, build_documentation] # Add this “omas’ directory to your $PYTHONPATH

# The [build_structures,build_documentation] options

# install packages required for extra development purposes

AT SM
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http://gafusion.github.io/omas

OMEFIT STEP module (O. Meneghini, others)

IMAS-compliant modeling workflows

e OMFIT STEP module
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OMEFIT STEP module (O. Meneghini, others)

IMAS-compliant modeling workflows

:m Stability Transport Equilibrium Pedestal
A" | I Controller & Optimizer

OMFITprofiles |
Experimental profiles |,

OMEFIT STEP module § TGYRO

L] Transport + Pedestal i
, TGLF-NN  EPED1-NN '

® couples components (steps) to support : :
workflows | :

1 g P i

- open-loop prediction /.20 - :

~ control 52 & T3 5

- optimization e E E< :
optimiza \ 855 B3 :

. 2 E -

Data exchanged between steps via OMAS

Can write data to IMAS at any stage

'
'
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TRANSP Collaboration (J. Sachdev, B. Grierson)
PPPL support of AToM/GACODE

AToM seeks synergy with TRANSP usage
PPPL staff assist with
- maintenance of TRANSP OMFIT module
- development of the Plasma State code including OMAS/IMAS translators
AToM reduced model development feeds into TRANSP
TRANSP modules to be deployed via git, accessible by community

- PSPLINE - nearly complete
- Plasma State - ongoing investigation
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TRANSP Collaboration

PPPL support of AToM/GACODE

36

TRANSP usage: over 62k simulations performed since 2010

= CMOD ® MAST m JET | AUGD

NSTX m NSTU

TRANSP used with several other devices including: ARIES, DEMO, FNSF, HI2A/HL2M, IGTR, JT60, KDMO, LTX, MST, RXFM, STEP, TCV, TFTR, WRK
Candy/SciDAC-PI/July 2019
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Examples of fast-prediction workflows
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Tokamak physics spans multiple space/timescales
Core-edge-SOL (CESOL) region coupling

: CESOL ———
Core Edge SOL

Profile

ATSM
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AToM IPS-FASTRAN CESOL is being Extended to Wall (JM. Park)

2D Impurity transport in entire tokamak volume

Electron density x10°/m?)
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Fast predictive capability 1: TAUENN (J. McClenaghan)

(0+¢)-D capability

q = qo + (905 — qo) (r/a)*

s . qos = 5a>BS/(RI,)
¢ Equilibrium and sources based on input )
global parameters: K = Ko + (ks — Ko)(r/a)

O =084(r/a
R/ a, BT/ Ipl 7,le,ped/ Paux; K, 6/ qo, Zeff S( / )

3.2t

2.4}

1.6}

_/

0.8 5

859z @07 o% o083 1o
r/a
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Fast predictive capability 1: TAUENN (J. McClenaghan)

(0+¢)-D capability

¢ Equilibrium and sources based on input

global parameters: 16
RI a, BT/ Ip/ 7/le,ped/ Paux: K, 6/ qo, Zeff 12}
® Pedestal shape (7 = rpeq) from EPED-NN: sl
Set agpED
4l
85

42

T(r) = f (r, x1GLF, XEPED)

Ti, Te (keV)

ne(101° m3)

TGLF \

EPED-NN

Candy/SciDAC-PI/July 2019
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Fast predictive capability 1: TAUENN (J. McClenaghan)

(0+¢)-D capability

43

Equilibrium and sources based on input

global parameters: 16
RI a, BT/ Ip/ 7/le,ped/ Paux: K, 6/ qo, Zeff 12}
Pedestal shape (7 = rpeq) from EPED-NN: sl
Set agpED
Core shape (r = 0.6a) from TGLF: at
Set xrGLF
85

T(r) = f (r, x1GLF, XEPED)

Ti, Te (keV)

ne(101° m3)

TGLF \

EPED-NN
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Fast predictive capability 1: TAUENN (J. McClenaghan)

(0+¢)-D capability

44

Equilibrium and sources based on input

global parameters: 16
RI a, BT/ Ip/ 7/le,ped/ Paux: K, 6/ qo, Zeff 12}
Pedestal shape (7 = rpeq) from EPED-NN: sl
Set agpED
Core shape (r = 0.6a) from TGLF: at
Set xrGLF
85

Match TGLF flux at r/a = 0.6

T(r) = f (r, x1GLF, XEPED)

Ti, Te (keV)

ne(101° m3)

TGLF \

EPED-NN
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Fast predictive capability 1: TAUENN (J. McClenaghan)

Performance relative to power-law fit

, Power law fit to experimental data L Town theory-based prediction
10 r r r 7 10 - r T
¢ JET + AUG CMOD - L’
mASDEX JET2M  m JT60U ot e
AD3D + START ¢ TCV e
100 | *PDX * PBXM ¥ TDEV 4. 100 |
7 COMPASS
- AUG
v 0
%10-1 Q10-1 I PBXMCMOD
[}
9] 9
o e g@ﬁ DIII-D
) 7
107} P 102 &, TCv
y // 3°
4:4'# World Wide Data Base COomMP
A (13 Devices) .7
3 y3L2 L L L

d L L L 1
10° 102 10! 10° 10t 10° 102 10! 10° 10t
Te,98y2 (S) Te,NN ( S)
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Fast predictive capability 1: TAUENN (J. McClenaghan)

Performance relative to power-law fit

, Power law fit to experimental data L Tow theory-based prediction
10 T T T 5 10 — T T
¢ JET + AUG CMOD - R4
mASDEX JET2M  m JTE0U ,:’ ITER 4
AD3D 4 START 4 TCV steady N\ .
10°] *PDX % PBXM ¥ TDEV &  |TER 10°| state o
7 COMPASS baseline baseli
_ AUG aseline
w iy JET
g10” c10l|  PBXMCMOL,
[
%) 9
B P i@@ DIII-D
. 7
10} 102 %, TCv
i [ 4
# e
# World Wide Data Base COMP
fﬁ (13 Devices) e
3 . 1 1 1 -3 7 1 1 1
10° 10?2 10" 10® 10 10° 10?2 10" 10®° 10
Te08y2(S) Tenn(S)
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Fast predictive capability 22 MODEL-PROFILES (J. Kinsey)

1D model: scaling law plus fast equilibrium/heating

® Rapid equilibrium/profile estimation Workﬂ(%vgaglagram
¢ DataGezCC}’ggge: interf NBEAMS Modelprofiles VMOMS
expro interface

® Sources: GETtFP oo
Ohmic, NBI, radiation PP’ & FF :

¢ Equilibrium: ’ E
VMOMS CEQSTATS g~ EFIT E

e Profiles: v :

- Rotation (DeGrassie), scaling F?E;A L3 nlivlifgci < l:lEBg

(Thomsen-Cordey) = - -

¢ Compute time less than 30 seconds L
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Fast predictive capability 22 MODEL-PROFILES (J. Kinsey)

1D model: scaling law plus fast equilibrium/heating

Performance
Empirical Pressure Workflow v2 with 2 EFIT iterations
® Rapid equilibrium/profile estimation ,';v'g AVIS in q'='1(;A4'°/; 31 DIIFD H-modes
¢ Data exchange: 030 F ]
GACODE expro interface 025F ]
® Sources: 0.20
Ohmic, NBI, radiation o '
¢ Equilibrium: 0.15
VMOMS 010
e Profiles:
. . . 0.05
- Rotation (DeGrassie), scaling
(Thomsen-Cordey) 0.00
[ ]

Compute time less than 30 seconds

Discharge
48 Candy/SciDAC-PI/July 2019 A-r M



Merging and regression
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OMFIT Update Workflow (R. Kalling)

OMEFIT is mission-critical and complex

OMFIT Automerge Branch
Changes Committed & Test Failure

Pull Request
Branch

Needs Updating

Autemerge Branch
& Test Success

Maintainers Review Dependency YAML
Roproved Updsted I

No Dependency
Changes

L

Tests Pass Tests Fail Failure
D Human Involvement
. Automated
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OMFIT Update Workflow (R. Kalling)
Automatic regression and update

® The automerge branch allows trusted developers to integrate features with a greatly
reduced risk of broken code being distributed

® The regression test system uses a labeling mechanism to exclude tests that are not
appropriate for a given test environment

- for example, no gui, or a specific server not being available

® Regression test system automatically selects relevant tests given code changes in a
commit to reduce testing time

® Automatic package rebuild/upload allows installations to stay up-to-date whenever
a developer changes OMFIT dependency requirements
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Fidelity hierarchy
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Fidelity hierarchy

Key theme for the future of whole-device modeling
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Fidelity Hierarchy is CRITICAL

Range of models from leadership codes to REDUCED MODELS

o One-off heroic simulation

Physics 4~ Leadership-class computing
Development highest fidelity simulations
Calibrate ( > Inform

—————————— Reduced models for validation

Train ( >Inform

Machine-learning models for
optimization & real-time control

Physics
Validation

Phy
Applica

AT SM
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CGYRO ITER Baseline Simulation (N. Howard, C. Holland)

Electron-ion multiscale resolution
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CGYRO ITER Baseline Simulation (N. Howard, C. Holland)

Electron-ion multiscale resolution

kypi <92, kypi <54

Highest GK resolution ever

280M core hrs on Titan
At: 220K FFTs of length 5.6M
500K At
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Microtearing Turbulence (X. Jian, C. Holland)

Discovery of MTM-driven transport in high-3, discharges

1)
DIII-D

/ -H rnoéle ITG

i




Performance on Leadership Systems (1. Sfilogoi, G. Fann)

GPU systems lack compute-communicate balance of CPU systems

1000 —e— Skylake Piz Daint B B st H field B o
—e— Stampede2 —o— Titan 0.7

«=—o— Cori KNL =—— Summit,

10

Wallclock time (s)
Fraction of time
(=]
-

16 64 256 1024
Number of Nodes

0.0
Stampede2 Cori Skylake Titan Piz Daint Summit

e LEFT: 6-platform (3 CPU + 3 GPU) strong-scaling comparison

¢ RIGHT: kernel-level analyses (compute time, communicate time)

AT SM
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OpenMP performance on KNL
High throughput/productivity on Cori

[— MPI=512 o= OMP-3] 400}
800
= =
o 400+ Q200+
g § 0 .\//—’/
e B
] ~
9 o
S 200+ ]
% % 100}
= 2
100 F
50+
1k 2k 1k 8k 16k 2 1 8 16 32 64
Total number of Threads Number of OpenMP threads per MPI task
[ ]

Significant loop-level work (for OMP) left after MPI distribution
® Excellent scaling up to 64 OpenMP threads on Cori
® Hundreds of CGYRO database runs completed in 2019 — reduced model

AT SM
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GPU Performance (via cuFFT and GPUDirect MPI)

New Optimizations by Igor Sfiligoi (SDSC)

80 = CPU 80 = other
70 = GPU 70 = comm [
= compute
60 60
50 Z
2 g
=540 540
30 30
20 20
10 10
0
mem comm  str nl field coll  other total 4xV100 2x Skylake 2x Power9 1x KNL

® Expensive kernels (nl, coll) remarkably fast on GPU
¢ Summit has GPUDirect MPI bug (IBM Spectrum MP], libcoll complex)
¢ Underway: embedded/adaptive timestepping (G. Fann, ORNL)
60 Candy/SGDAC-PLJuly 2019 ATSM



Next level of fidelity hierarchy: TGLF

Centerpiece of all AToM predictive modeling workflows

® Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
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Next level of fidelity hierarchy: TGLF

Centerpiece of all AToM predictive modeling workflows

® Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
® Determines quality of profile prediction
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Next level of fidelity hierarchy: TGLF

Centerpiece of all AToM predictive modeling workflows

® Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)
® Determines quality of profile prediction
® TGLEF is the heart of AToM profile-prediction capability

- linear gyro-Landau-fluid eigenvalue solver
- coupled with sophisticated saturation rule
- evaluate quasilinear fluxes over range 0.1 < kgp; < 24
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Next level of fidelity hierarchy: TGLF

Centerpiece of all AToM predictive modeling workflows

Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)

® Determines quality of profile prediction
TGLF is the heart of AToM profile-prediction capability
- linear gyro-Landau-fluid eigenvalue solver
- coupled with sophisticated saturation rule
- evaluate quasilinear fluxes over range 0.1 < kgp; < 24
Saturated potential intensity

— derived from a database of nonlinear GYRO simulations
- database resolves only long-wavelength turbulence: kgp; < 1

ATSM
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Next level of fidelity hierarchy: TGLF

Centerpiece of all AToM predictive modeling workflows

Reduced model of nonlinear gyrokinetic flux (1 second at 1 radial point)

® Determines quality of profile prediction
TGLF is the heart of AToM profile-prediction capability
- linear gyro-Landau-fluid eigenvalue solver
- coupled with sophisticated saturation rule
- evaluate quasilinear fluxes over range 0.1 < kgp; < 24
Saturated potential intensity

— derived from a database of nonlinear GYRO simulations
- database resolves only long-wavelength turbulence: kgp; < 1

107 times faster than nonlinear gyrokinetics

ATSM
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TGLF

Ongoing calibration with CGYRO leadership simulations

Theory-based approach — must be calibrated with nonlinear simulations
Predictions validated with ITPA database

Discrepancies: L-mode edge, EM saturation

CGYRO multiscale simulations needed

800~ —
10 T T 5 82 Miller geometry smulatwons A
ARine = 19% 700 | Energy Fluxes E

(Ryping) -1 = -1% -
TGLF-09 -

(MJ)

inc

GYRO

= QIO -
01F = DIII-D H-

m Q-0 Hybrid
u Q-0 ITYER Demo
m JETH

L m Tyhbric
0.04 151 discharges|® TFTR L e
0.0 0.1 1.0 10.0 0 100 200 300 400 500 600 700 800
Experimental W, (MJ) TGLF

TGLF Predicted W.

AT SM
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Fusion simulation use cases
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AToM Use Cases (C. Holland, P. Bonoli, others)

Coordination of validation/physics studies

¢ Observation
Most every modeling effort eventually settles on certain set of inputs
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AToM Use Cases (C. Holland, P. Bonoli, others)

Coordination of validation/physics studies

¢ Observation
Most every modeling effort eventually settles on certain set of inputs
- these inputs provide benchmark points for regression testing and physics studies
- can be, but not necessarily, drawn from actual experiments
® Plan

organize AToM validation and scenario modeling work about uses cases
- provide comprehensive, organized, documented datasets
® Long-term vision

development use cases through iterative process
- start simple and grow as needed by maturity of physics and validation workflows
- will grow to provide a community knowledge-base
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AToM Use Cases

Tentative examples

Use case Time BT
description (ms) (N

L-mode shortfall DIlI-D 128913 1500 + 100 21 (0} 2.14
ITER I, ramp DIll-D 161129 400 +30 2 0.5 0 1.5 11
ITER I, ramp DIll-D 161129 700 +30 2 0.8 0 1.6 1.3
ITER |, ramp DIll-D 161129 1500 + 30 2 1.5 0 1.6 1.2
H-mode stiffness DIll-D 145456 1775 + 100 21 1.2 (o] 3.2 1.5
H-mode stiffness DIll-D 145452 1665 + 100 21 1.2 0 7.2 1.4
H-mode stiffness DIll-D 145937 1825 + 100 21 1.2 0 6.9 5.9
ITER baseline DIll-D 153523 3380 =400 1.7 1.3 3.4 2.8 0.6
ITER baseline DIlI-D 155196 3000 + 200 1.7 13 (0} 2.8 1.5
ITER baseline DIll-D 155196 2200 + 200 1.7 1.3 3.3 27 23
ITER baseline DIll-D 171534 4200 + 500 1.7 1.3 3.5 28 1.5
ELMy H-mode C-Mod 1120815026 1025 + 75 5.6 0.9 11 0

|I-mode C-Mod 1120907028 1005 + 45 5.8 1.1 2.1 0 0
Inductive Q=10 ITER - - 5.2 15 17 33 34
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