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Top image credit B. Helland (ASCR). Bottom left, center, and right images credit ALCF, NERSC, and OLCF respectively.



The RAPIDS Institute =~ RAPIDS/

Solving computer science and data challenges for Office of Science application teams
to achieve science breakthroughs on DOE platforms.

Application Engagement &
Community Outreach

» Technology Focus Areas
— Data Understanding — scalable methods, robust
infrastructure, machine learning i

— Scientific Data Management — I/O libraries, coupling,

knowledge management

— Platform Readiness — hybrid programming, deep > s
memory hierarchy, autotuning, correctness 5 a E
. A B e __ll.=l S S O |
= Application Engagement & [[E&E c 8
— Tiger Teams engage experts in multiple areas g = o .%
— Software productivity: verification and validation, etc. ST 2 c £ ©
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Many Ongoing Partnership Collaborations! ~/ RAPIDS/
e Bl prog [RAPIDS Member(s) |

Coupling Approaches for Next-Gen Architectures (CANGA)
Prob. Sea-Level Proj from Ice Sheet & Earth System (ProSPect)
An integrated system for optimization of sensor networks
Advancing Catalysis Modeling

Comp. Framework for Unbiased Studies of Correlated Electron
AToM: Advanced Tokamak Modeling Environment

Plasma Surface Interactions (PSI-2)

Center for Tokamak Transients Simulations (CTTS)

Integrated Simulation of Energetic Particles in Plasmas (ISEP)
Multiscale Gyrokinetic Turbulence (MGK)

High-fidelity Boundary Plasma Simulation (HBPS)

Tokamak Disruption Simulation

Inference at Extreme Scale

HEP Data Analytics on HPC

HPC Framework for Event Generation at Colliders

HEP Event Reconstruction with Cutting Edge Computing
Simulation of Fission Gas in Uranium Oxide Nuclear Fuel
Towards Exascale Astrophysics of Mergers and SuperNova
Nuclear Low Energy Initiative (NUCLEI)
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Visualization of Antarctica Land Ice

Scientific Achievement

Used SciDAC ProSPect ice sheet model output and
streamlines to show Antarctic ice sheet mass loss in response
to extreme climate forcing scenario, using Paraview.

Significance and Impact

Visualization of key ideas in the science of land ice
modeling is critical for scientific understanding within the
climate research community and for the communication of
climate science concepts to the general public.

Research Details

» Collaboration with SciDAC ProSPect to visualize simulations
of Antarctic ice sheet evolution.

» Leveraged and improved ParaView, a SciDAC supported,
open-source visualization tool.

* OngOing Support Of SC' DAC PrOSPeCt for VisuaIiZing and Evolution of the West Antarctic Ice Sheet over 200
communicating the consequences of future ice sheet years following the loss of all floating ice shelves.
evolution in response to climate change.




Parallel Event Generation and Analysis ~RAPIDS/

on HPC Systems

Scientific Achievement

Fermilab researchers developed two scalable HPC
codes using the DIY programming model that assist in
rapidly generating Monte Carlo events and comparing

generated events with experimental data from NOvA
and LHC.

Event generator model for proton-
proton collision: Robust predictions

of collider events are needed to search

for new physics effects. Much of the
dynamics is described by tunable
parameters. The calculation of event [\
generator predictions is expensive, \j
and must be done for each choice of
parameters. A full detector simulation

of these calculations is even more
expensive, requiring parallel HPC

codes.

Significance and Impact

HEP workflows require generating and analyzing vast
numbers of MC events. The RAPIDS DIY technology

Scaling of ttbar production and analysis on KNL

aids in development of codes that efficiently utilize HPC

resources.

Research Details
— Pythia8 generates Monte Carlo events [1]
— Feldman-Cousins correction used for comparison [2]

— DIY encapsulates communication in a productive model
— Allows for extremely short turn-around of large parameter space

explorations (e.g. generator tuning)

[1] Hoche et al., arXiv 2019. [2] Sousa et al., CHEP 2018.
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Scalability: strong scaling
of the HEP’s Pythia8 event
simulation with ASCR’s
DIY up to 8704 KNL cores
on Cori. Up to 5 million
proton-proton collisions.

—| The deviation from ideal

scaling is due to
diminishing work per core
at high core counts.
(Images: Holger Schulz, U
Cinicinnatti, Fermilab)
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Performance Optimization for Multiscale =~ RAPIDS/

Gyrokinetic Turbulence

Scientific Achievement
Improved the Gyrokinetic Electromagnetic Numerical
Experiment (GENE) of SciDAC MGK throughput up to 30%,

which has been used to achieve scientific breakthroughs on
frontier multiscale turbulent transport problems

Significance and Impact

The simulation experiments often last days current HPC

platforms, and reducing simulating running time accelerates
scientific discovery.

Research Details

e Collaboration between LBNL and U. Texas-Austin

e Developed with Fortran 2003+MPI+OpenMP, using BLAS,
LAPACK, FFT, PETSc, SLEPc, ScaLAPACK, HDF5 libraries,

e Communication performance significantly improved up to 50%

e Recent effort focusing on GPU optimization

Ll

Snapshot from a numerical simulation of
plasma turbulence by GENE
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Performance improvement due to
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Accelerating Fusion/Fission Simulations ~RAPIDS/

Scientific Achievement |

Xolotl memory footprintvs |
Improved science throughput for several applications used in SCiDAC reaction netwerk e
fusion and fission projects i

ccccc

Significance and Impact

Can simulate much larger Xolotl reaction networks, with greater [ /1

simulation throughput than before; established baseline for

ﬁﬁﬁﬁﬁ

KORC scientific throughput, and then improved it. Elapsed time for Xolot!

;; 750 checkpoint writing on Eos Cray
. 0 XC30, 32 processes per node
Research Details -
' 3500

= Xolotl: cluster dynamics simulator for predicting gas bubble
evolution in solids

» Reduced memory footprint of Xolotl version used for FY2018 FES
theory milestone experiments by up to 88% on tested configurations
(with contribution to PETSc code)

» |dentified and fixed multiple Xolotl /0O performance problems: writing
checkpoints 57x faster at scales, in FES theory milestone runs. KORC elapsed time vs number of MP!

» |dentified optimization enabling Kinetic Orbit Runaway Code tasks (64 total threads for all runs)
(KORC) to run up to ~2x faster (from SciDAC SCREAM project)

Elapsed Time (s)

Number of MPI Tasks

OAK
RIDGE

National Laboratory

.
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Exascale: End of the CMOS Era cRas

O(100 TF) per node

Wide vectors / GPUs Memory system Disk for Flash for NVM for
More for specialized procs on package archive main storage storage cache
{"_‘ oo

E ::5::?:5: 5:;;::,:""}’;/;7;

O(100k) nodes, ~30-50 MW
O(10 Exaflops)

Low diameter networks with optics

Over the next decade, computers won’t change that much from the current model.

©2019 Cray Inc. S. Scott, “Beyond Exascale: Playing the CMOS Endgame,” SOS23, March 2019.



Platform Readiness

Preparing scientific codes for current and upcoming system through application of best-in-class

expertise and tools.

Performance
Modeling/Analysis

* TAU: Performance
Analytics & Tuning for
Heterogeneous HPC

* Roofline: Easy-to-
understand, visual
performance model
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64.0

)
<]
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16.0

8.0

attainable Gflop/s

4.0
2.0
1.0

actualflop:byte

0.5
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actual flop:byte ratio

Portable
Programming

* For heterogeneous
systems, deep
memory hierarchies:
OpenMP, OpenACC

 AML, Papyrus:
abstractions for shared

data across deep
memories

Applications

Template Container Library (TCL)

map<Key, T> vector<T> matrix<T>

Virtual File System (VFS)

Uniform Aggregate NVM Storage Image
Local
NVM NVM

nt
t nt
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v M Shared NVM i
e.g. Summit (ORNL), Sierra (LLNL) .g. Cori (NERSC), Trinity (LANL/Sandia)

Autotuning
* Rigel: Vary OpenMP
pragmas to investigate
search space of
* SURF: Uses ML to
search optimal
autotuning parameters
Enables effective use
of accelerators without
multiple code versions

4x107 N
3x107 “
= ., o
. .
‘ °® *
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© ) ) W0 120
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20

~RAPIDS/

Program
Correctness

» CIVL: Static
verification of HPC
programs

* Uses static analysis
techniques over well-
defined input ranges to
do symbolic execution

» Enables verification
equivalence of two
implementations

> civl compare
-spec diffusionld.c
-impl diffusionld_mpi.c

=== Result ===
The standard properties hold
for all executions.




Roofline Performance Modeling ~—7RAPIDS/

ASCR Base & LDRD

Developed Roofline concep
2006-2011:

« Easy-to-understand, visual
performance model

» Offers insights to programmers
and architects on improving
parallel software and hardware.
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© 50
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Proof of concept successfully
applied to numerous computationa
kernels and emerging computing
systems.

SciDAC3 Development

Roofline augmentation
under SciDAC3
2013-2017:

+ Collaboration with FASTMath
SciDAC Institute

+ Developed Empirical Roofline
Toolkit (ERT) with public releas
03/2015, with Roofline Visualiz

* Created community tool for
automatic hardware
introspection and analysis

Roofline Model, Mira MiniDFT

A8 experments run using
1MPI task X 64 OpeniP theads.

R
. A zoewes
o i

Autom
Rooflin
code u
to diag
perfor
proble
for DO
SciDA
codes.

H
L

, .
g ' GBI
s
£
& K
: .
2 -
K
s Lt
:
arprcaLs
e

Pefomance GRopa/sec) NG

e ||| ] S

Outcome & Impact

Roofline has become a broa:
used performance modeling
methodology across DOE

Intel has embraced the appr:
and integrated it into its
production Intel® Advisor

Collaboration with NERSC to
instrument and analyze exec
of real applications on mach
such as Edison and Cori

‘‘‘‘‘‘
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Snapshot of existing Intel Rooflii
tool in practice.




TAU: Performance Observation, Analytics, "ZRAPIDS/

and Tuning for Heterogeneous Platforms

» Heterogeneous software stacks
— Languages: OpenMP, OpenACC, CUDA,
ROCm
— Libraries/Metaprogramming: Kokkos, RAJA
— Hybrid: MPI+X
» Runtimes
— OpenMP, MPI, I/O, asynchronous multitasking
= Compilers and autotuners
— LLVM, Chill, Oreo, Active Harmony, OpenARC
» Heterogeneous hardware measurement
— Memory, Power, Network
= Integration with ADIOS2 for both 1/O library
measurement and ADIOS2 output of application
performance data




Reproducible Performance Analysis =~ RAPIDS/

with HEP and NUCLEI

Scientific Motivation
Develop a data analytics platform for creating and reusing the

Branch misp

al cache misses

performance analysis workflows for improving the Sources of performance degradation
i in the highest execution-time function TLB data misses
performance of DOE science codes. T R ool KL (HEP)

= HEP Event Tracking: Effective utilization of many-core SIMD and SIMT e
= NUCLEI: Exploiting hybrid distributed- and shared-memory parallelism in RN
integrated legacy and newly developed codes :
Significance and Impact
By enabling customizable, reusable performance analysis _ ".';' ZZtovféfﬁ@%e\ggﬁilcgfﬁggggon
that can be maintained and extended by application 27 il highlighting vectorization on Intel
teams, we can reduce the reliance on expert help and . v S?fke cold (NYELED
speed up performance optimization. w ' -4
’"V““““f"““" App Towads; 30 2 ""“"‘Zel""'“' 2o 1 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

Research Details

® Parallelized Kalman filter tracking, mkFit (HEP Event Tracking): Used TAU Strong scaling on Skvlake Gold of

Commander and Python Pandas to create performance analysis “recipes”. Openﬁﬂp hit f;c.{?ding C};de (HEP) [
Achieved 2.7x speedup from explicit vectorization and > 10x from shared- :
memory parallelization on KNL; 4.4x speedup when integrated into main 20

8.00

CMSSW framework (without optimizing data conversion). 00 ; PRI % o
® HFODD (NUCLEI): Used TAU and Intel's VTune and Advisor tools to create -
. _ . . . . L L " UNIVERSITY OF
automated analysis workflows for shared-memory scaling and vectorization. LL% Ng‘gg%';ff_agggpo?;e 2% Fermilab O OREGON




Leveraging One-Sided Communication for Sparse

Triangular Solvers

Scientific Achievement

= Qur one-sided MPI version of SpTRSV attains a 2.2x
speedup at 4,096 processes on Cori (NERSC) over the
existing two-sided in SuperLU_DIST.

» We constructed a critical path model to assess the
observed performance relative to machine capabilities.

Significance and Impact

SuperLU preconditioners are essential for M3D-C1
and NIMROD solver, where overhead is dominated
by communication. Our work directly improves
performance and scalability of SpTRSV. Moreover,
our one-sided implementation provides a pathway
to accelerator-based exascale solvers.

Research Details

= Collaboration between CTTS, RAPIDS, and FASTMath
Analyzed M3D-C1 and NIMROD scaling performance
Evaluated Cray’s vs ETH’s foMPI one-sided MPI (8x speedup)
Integrated ETH'’s foMPI into SpTRSV (2.2x speedup)
Improved runtime/scalability on NERSC’s KNL & Haswell

~
A
rrrrrrr ""|

X TECHX =

BERKELEY LAB

~RAPIDS/

10

Time (ms)
=)

— — Modeled upper bound
—=#— Measured

— — Modeled lower bound

Number of processes

Model of M3D-C1
matrix. Gap between
measured (orange)
and lower bound
indicates the potential
benefits gained from
better task placement.
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Blue is SpTRSV total solve time of two-sided MPI, Yellow is
one-sided. Performance improved 2.2x, and SpTRSV shows
good scalability (making it friendly for exascale solvers)



Improving Collective Reduction Performance On

Manycore Architectures ?R APIDS /

Scientific Achievement
Improve collective reduction performance on manycore

architectures with threading and data compression. MPI_Reduce performance as a function of
Improves reductions by up to 4X on Cori KNL for vectors, algorithms, MPI concurrencies, and

and 2.6x for overall BIGSTICK application (part of the CalLat OpenMPs on NERSC Cori-KNL

NP SciDAC3 partnership). The Total MatVec and MPI_Reduce Times

90.0 20
el Total MatVec (Cray)

Total MatVec (RedScat) P
e=@== \VIP|_Reduce (Cray) &
@B \VP|_Reduce (RedScat)e”

MatVec Spee}gp -

80.0
25

Significance and Impact

Global reduction is the top collective functions widely used
on HPC platforms. Improving its performance has

70.0
60.0 20

50.0
15

The Average Times(s)
Speedup for Total MatVec Times

-
fundamental implications for many scientific codes. == .
20.0 [ XK XX XX L2 X 1 ¥ T ¥ ¥ ) oe
Research Details e L ey
o Most optimizations focus on latency and bandwidth. Thisis not 2 . s 6
enough on manycore architectures. The OpenMP Concurrency
e Use idle threads to accelerate local reductions, which often Performance Improvement for BIGSTICK’s matvec

become the performance bottleneck for large vectors showing 2.6x speedup on 2048 processors

e Data compression for reduced communication of sparse data
e Developed hierarchical algorithms which combines the
advantages of both algorithms
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Data Management
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Technology Change in ~RAPIDS/

Evolution of the NERSC storage
StO rage SyStemS hierarchy between today and 2025

Use Case
(Retention)  10day 2020 2025

Solid-state disk vs. hard disk drive pricing Bursl Buffer

. I Tempora B i
(per GB ratio) | (<84 daye) !
1 (<84 days)

: Scratch ey

12 SIIIzzozooIio Iz orag --Z] integrated
10 1% ECampaign storage

\ i (< 1year)
— o

‘) — | (-1 yean

9,
"\.’\_ o

©

(SSD/HHD)
o
(@]
o
3
3
c
3.
<

f-platform
storage

p
0 T T . ' . : 1 Forever

2015 2016 2017 2018 2019 2020 2021 ' (> 1 year)
Source: Hyperion research Continued decline in cost of SSD capacity relative to
https.//www.storagenewsletter.com/2018/08/07/flash HDD has led to plans to employ SSD-backed
-storage-trends-and-impacts platform storage, integrated into the platform. G.

Lockwood et al. “Storage 2020: A Vision for the Future of HPC
Storage,” October 2017,



https://www.storagenewsletter.com/2018/08/07/flash-storage-trends-and-impacts

~RAPIDS/

Data Management

Deploying and supporting efficient methods to move and manage data in a scientific

campaign.
Performance Storage and 1/0 Knowledge Code Coupling
Monitoring - HDF5: A data model, Management - Dataspaces & SST2:

» Understanding of 1/0
performance at scale

 Darshan: “Always on”
statistics gathering

» TAU: Fine-grained I/O
tracing of operations at
multiple layers

Mira: Jobs I/O Throughput
3 Syster Deak-2£OGB/s [ 1 ;
% Peak

110 Throughput

=
b4

1B 1KB 1MB 1GB 178 1PB
Number of bytes transferred

parallel I/O library, and
file format for storing
and managing data

+ Parallel netCDF:
Provides parallel
access to traditional
netCDF datasets

* ADIOS: community 1/0
framework to enable
scientific discovery

100 ADIOS: zlib

put T

parallel /0 throughp

« FastBit: Organize and
quickly find records
across files generated
and used during a
scientific campaign

* Manage and query the
data across a scientific
campaign

Metadata File

In-memory storage

distributed across set

of cores/nodes, using
RAM and/or NVRAM

¢ Fast I/O to couple

codes together
asynchronously

* In-staging data
processing, querying,
sharing, and exchange




Performance Monitoring “~RAPIDS/

Enabling understanding of I/O performance at scale

Mira: Jobs I/O Throughput

= Darshan ‘
— “Always on” statistics gathering —”—L 5
— Observes |/O patterns of applications running [ i
on production HPC platforms, without S B
perturbing execution, with enough detail to o . s e
gain insight and aid in performance debugging :
" TAU Nt ey tantrd”

— Fine-grained tracing of I/O operations at
multiple layers

— ADIOS?2 integration: integrated profile
instrumentation of ADIOS2 and ability to
stream TAU application performance data
directly out to ADIOS2 at runtime




Storage and I/O ~RAPIDS/

Libraries/frameworks to assist in fast and portable 1/O

= HDF5

— A data model, parallel I/O library, and file format for
storing and managing data

Applications

PnetCDF

caching/aggregation layer

kom k2 k1 kO

— Flexible, self-describing, portable, high performance m L/L
= Parallel netCDF o
— Provides parallel access to traditional netCDF datasets R
— Includes algorithms for accelerating common patterns PactCOF oy make et o ot Barsemuters
such as multi-variable writes R
= ADIOS ADIOS is used for the backend for SKA data movement/storage
— A community I/0 framework to enable scientific e N o i — B
d ISCOVGFy l | ;7 'T' " Inage Synthesis Graph 'i'—'\J
— In-memory code coupling for applications to other S S e
applications and/or analysis/visualization B B l _ '
— Incorporates the state of the art I/O techniques for _”‘r ! ) O
checkpoint, self describing data, and in situ data Wil B
movement between codes LT e R e o]

Visibility Ingestion Graph




Code Coupling: DataSpaces ~RAPIDS/

In-memory storage distributed across set of cores/nodes, using RAM

and/or NVRAM

P — \

» Fast /O to asynchronously couple codes |
together

= Couple simulation, visualization, analysis,
and performance monitoring

|
» |n-staging data processing, querying, |
sharing, and exchange l
— Virtual shared-space
programming abstraction
— Provides an efficient, high-throughput/
low-latency asynchronous data
transport
— Predictive data movement & layout

Runtime data
I coupling

, — -/ _— =
RAM e“NVRAM Y : 1 Online data
\ 7 N G '\.,
l'.’A.‘ “9‘ | analysis
| DRAM | and
NVRAM JREEZY | processing
J

Staging-based in-situ workflows using DataSpaces:
DataSpaces provides a semantically specialized shared-space
abstraction using staging resources to support dynamic and
asynchronous coordination, interactions and data exchanges
between components of an in-situ workflow. The figure
shows an in-situ fusion simulation workflow and illustrates
code coupling and in-situ data processing.



Global Particle-in-Cell Simulation of ~RAPIDS/
FUSion Plasmas Peak 1/0 performance for writing 50

Scientiﬁc Achievement checkpoints in GTC using ADIOS on 512
nodes of Summit GPFS

Energetic particle (EP) confinement is a key physics issue for o

the burning plasma experiment ITER. By enabling GTC with the

ADIOS framework, we can finally write the majority of the

1 147
physics data with minimal impact on the code performance on 1
the Summit HPC resource at the OLCF Gre “s’”gAD’OS on

2.5

2

Bandwidth (TB/s)

]

Summit, can reach near-

Significance and Impact peak, 2.2 TB/s for GPFS.
— GTC can generate over 100 TB of physics data every hour Writers per "°de
— GTC has been equipped with ADIOS to allow all of the T{'Ei;; gsr:;el;?gistrssai Zﬂ:ishhzg cli;;a
relevant physics information to be written to the Summit 03

GPFS file system in less than 3% of the total runtime 0.5
— New data analytics is being written for GTC to work in both

post-processing and in situ workflows Time to write

snapshot data was

Time (seconds)
o
e

Research Details N improved by 50x.
—A new “engine” inside of ADIOS was developed to allow ‘
for extreme performance for Particle In Cell code 1/0O o .
POSIX ADIOS

L. Wan, K. Mehta, et al, “Data Management Challenges of Exascale Scientific Simulations: A Case Study with GTC and ADIOS”, ICCM 2019 (accepted)




Fusion Coupling Workflow = RAPIDS/

Scientific Achievement
The Fusion HPBS project is focusing on researching

multi-way coupling science to study multi-scale/multi-
physics. ADIOS enables flexible data movement and

HBPS Coupling though ADIOS

management between coupled codes. XGEMN o ADIOS methods:
T * InSituMP!
Significance and Impact @ Staging SitTaMan Staging
In XGC and f analysis coupling, we move f- / Services Services
analysis computation, with full distribution of TAU InSitu Cheetah/EFFIS |
. . . . Performance Workflow
function f and electrostatic field, to a dedicated Monitoring Management
analysis code. XGC offloads these with ADIOS -
and improves core comPUtationaI Capab“ity- XGC Cyclone Case on Summit (1024 nodes) with 9X Analysis computations
0 0 HBPS's XGC F-analysis
Research Details coupling diagram (up)
« To improve data movement and flexibility, HBPS e e and performance
integrated with ADIOS for I/O management. ;j:: ;:Z improvement (left).
- Developing multi-way coupling science cases to " e " e ng;;’:;‘;’;zzzj;’;
study multi-scale/multi-physics study. 5o 5o 4 .
. . . . . XGC improved with
* Further investigating complex multiple coupling 00 - o - ADIOS in-situ coupling
scenarios: XGC-hPIC (plasma-material interaction) R - " framework.
and XGC and M3D-C1 for a higher fidelity MHD calc MAIN_LOOP =FOInXGC =FOPU  aFO in Stagig

%OAK RIDGE

National Laboratory




Accelerating Earthquake Detection ~RAPIDS/

Scientific Achievement
Developed a data parallel mechanism for analyzing the large
data sets from distributed acoustic sensing

Significance and Impact n
Demonstrate automatic parallelization applied to complex analysis ) ’gaj . =) i g
tasks in earthquake detection, achieving significant speedup. % § é E :Eg g

*a| |%3| |:8
Research Details N - e

* DAS: Distributed Acoustic Sensing is using Dark Fiber to collect
Earthquake at

ground motion data, about 500TB in past couple of years P 2 3 Berkeley ma.4
* Due to the noisy nature of the data, significant computation is § © § 01/04/2018
o (@]

needed to extract signals such as minor earthquakes
* Earth scientists currently use matlab to do their analyses:
Converting analyses to python reduces computation time from @
weeks to hours
* Using our automatic parallelization framework, ArrayUDF, further ‘
reduces the execution time to 20 seconds " :
Large windows, cleaner slgnal

»

Local similarity
with different
window sizes

Xing, et al. Automated Parallel Data Processing Engine with Application to Large-Scale Feature Extraction. In: MLHPC. 2018.
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Data Understanding

Facilitating understanding of large and complex science data through robust and
scalable analysis methods, including learning approaches.

Visualization Scientific Data Analysis Machine Learning
« Visualization tools that leverage * Feature detection for visualizing » Supervised learning methods,
modern HPC and comparative analysis including deep learning for object
* In situ frameworks, to enable - Geometric analysis: classification
efficient system usage Delaunay/Voronoi tessellation * Unsupervised learning methods,
« Scalable infrastructure: service - Statistical analysis of ensemble including dimension reduction
oriented data analysis and and uncertain data * Scalable parallel graph
reduction « Uncertain flows from ensemble algorithms
* Leveraging deep memory modeling  Sparse inverse covariance
hierarchy, on-node parallelism - Topological features in scalar matrix estimation
* Analysis/visualization of high fields

dimensional datasets




Visualization =~ RAPIDS/

Feature-rich visualization tools that can be run at scale, in S|tu

= Successful existing tools: ParaView and Vislt, both built on top

of VTK, take advantage of massively parallel architectures of
modern super-computers

» |n situ frameworks, Vislt/libsim, ParaView/Catalyst, ADIOS,

Sensei, Henson, enable using these systems efficiently with
the S|mulat|ons e.g., to visualize live simulations avoiding the
I/O bottleneck

= Scalable infrastructure: service-oriented data analysis and
reduction, co-analysis with performance data

= Major focus on adapting to the deep memory hierarchies and
massive on-node hybrid parallelism (VTK-m)

» Also useful information visualization techniques (EDEN,
CrossVis), techniques for analysis and visualization of high
dimensional datasets

V!S \VW’\( Il paraview vri (™




Scientific Data Analysis =~ RAPIDS/

Scalable methods for finding and analyzing features of importance

= Expertise in feature detection (ftk), traditionally for visualization and
comrf)adrative analysis. Moving forward as input to machine learning
methods.

= Geometric analysis (tess): scalable computation of Delaunay and
Voronoi tessellations, e.g., for density estimation in cosmological data

= Statistical analysis of ensemble data (edda):
— representation of large scale uncertain data
— analysis of ensemble and uncertain features
— exploration of parameter space for ensemble simulations

= Uncertain flows from ensemble modeling (fluid dynamics, climate,
weather)
— Generalizing flow features for uncertain data
— Surface Density Estimates to quantify uncertaint?/
— Scalable algorithms to stochastically trace particles

= Topological features in scalar fields
— Scalable computation of merge trees, contour trees, persistence
diagrams (used in cosmology, combustion, materials science,
etc.)
— Useful both for visualization and for comparison of simulations, to
each other and to experiments




In situ Viz Unlocks Unsteady Dynamics —=
at Extreme Scale ZRAPIDS/

Scientific Achievement

Unsteady synthetic jet flow control simulations create data
streams so large that dynamics are only practical to access with
in situ visualization.

Significance and Impact

In situ visualization allows comparison of instantaneous
vortical structures with phase averaged quantities from
experiment and simulation. Animations of images help
engineers understand how jets improve flow and scale
that improvement to flight/turbine conditions.

Research Details

» ParaView Catalyst compiled into PHASTA, provides
isosurfaces at every time step, at just 3% overhead to
simulation — far less than writing full data.

» Communication of parameter changes back to simulation :
(computational steering) in progress s LGI®

« Demonstrated scaling at over 1M MPI ranks on BG/Q parison to experimental results.
using SENSEI interface for in situ analysis and viz. W Kitware




Integrating Human Perception with Computation = pAp/DS/

for Guided Exploratory Data Analysis

Scientific Achievement

CrossVis helped materials scientists at ORNL CNMS understand

and improve a neural network classification process for
microscopic imagery and allowed ORNL BER climate scientists
to consider more variables from large scale, land model
parameter sensitivity analyses and improve model accuracy.

Significance and Impact

CrossVis enables flexible exploration and comprehensive
understanding of large, heterogeneous, and multivariate
data by integrating interactive visualizations and statistical
analytics.

Research Details

 Implements theoretical information foraging concepts, where information
dynamically derived from statistical analytics are used to augment interactive data
visualizations to make key patterns visually salient.

» Provides an advanced multivariate visual analytics framework supporting
heterogenous data types (e.g., images, temporal, categorical), progressive high-
performance rendering, and a scalable data model.

sssssss
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CrossVis is a visual analytics tool that integrates
Statistical analytics and an extended version of
parallel coordinates to allow flexible exploratory of
large and heterogenous multivariate data. In
addition to climate and materials science, CrossVis
has been applied to cyber security, manufacturing,
power grid, and system performance projects.

OAK RIDGE

National Laboratory



Statistical Super Resolutior_Is for_ Large_ = RAPIDS/
Scale Ensemble Cosmological Simulations

Scientific Achievement

Enable scientists to reduce the storage space requirement when running large
ensemble simulations, while still make it possible to perform full scale
simulation parameter exploration for post-hoc analysis

Significance and Impact

With the statistical signatures, it is now possible to reconstruct Raw (100%) ISABELA (24%)
simulation output of novel parameters that was not saved during
simulations. The space saving can be more than 95%.

Research Details

— Store a small number of simulation results at full resolutions into a code
book as prior knowledge

— Down sample the remaining data into GMMs as the statistical signatures

. . . SZ (4.5%) Ours (0.44%)
— Data at an arbitrary parameter configuration can be reconstructed from the
prior knowledge and the statistical signatures Images produced by our super
.. o .. resolution representations
— The priori knowledge only takes 0.44% of the original data for a cosmology SR
simulation using Nyx Extremescale  |OHJQ
¢ LOS Alamos Arg"o“g‘ﬂg"g R UNIVERSITY
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Machine Learning
and Al

Executive Order 13859 of February 11, 2019

Maintaining American Leadership in Artificial Intelligence

By the authority vested in me as President by the Constitution and the
laws of the United States of America, it is hereby ordered as follows:

Section 1. Policy and Principles. Artificial Intelligence (AI) promises to
drive growth of the United States economy, enhance our economic and
national security, and improve our quality of life. The United States is
the world leader in AI research and development (R&D) and deployment.
Continued American leadership in Al is of paramount importance to main-
taining the economic and national security of the United States and to
shaping the global evolution of Al in a manner consistent with our Nation’s
values, policies, and priorities.



Machine Learning and Al —RAPIDS/

Domain-specific applications of deep learning, predictive
performance models, data- and model-parallel training

= Supervised Iearnin? methods:
— Deep learning for object classification and identification
— Large-scale training of convolutional NNs
— Automatic multiobjective modeling (AutoMOMML) to simplify model
selection
— Asynchronous hyper-parameter and neural arch search (DeepHyper/HPS)
— Autotuning parameters for code/application (SuRF)
— Performance, power, and energy modeling of novel HPC architectures;

» Unsupervised learning methods:
— Manifold learning/dimensionality reduction; approximation algorithms to
cope with streaming data, streamin? spectral clustering
— Useful for adaptive sampling (e.g., for molecular dynamics trajectories)

Reinforcement learning

Scalable parallel graph algorithms (LAGraph):
— recast graph algorithms into linear algebra operations
— building blocks and communication-avoiding algorithms for key functions

Tools for understanding ML models (DeepVid, GANViz, DQNViz)




Using Roofline to Characterize Tensor Flow —  RAPIDS/
on GPUs

Scientific Achievement —
Created a methodology for analyzing the execution of GPU | | e iees /

Tensor Core (FP16): 125.0 TFLOP/s
@
%

Tensor Core-accelerated DL/AIl applications using Roofline. Fo16 boteh cioe 35

FP16 batch size 32
FP16 batch size 64

[} FMA (FP16): 28.3 TFLOP/s

- L2
= HEM
/ No-FMA (FP16): 14.1 TFLOP/s
.

FMA (FP32): 14.1 TFLOP/s

Significance and Impact

This work enables Roofline-based analysis of NVIDIA
Tensor Core accelerated AI/DL Applications including = R ——
quantitative assessments of TensorFlow performance on / / /g

NVIDIA Volta GPUs. = 4 & 5 v

Arithmetic Intensity [FLOP/Byte]

Performance [GFLOP/s]

I
RN
Y

TensorFlow (forward pass) on Volta V100

Research Details
» Collaboration between RAPIDS, NERSC, and NVIDIA Results shown are relative to precision
= Formulated methodology for using NVProf to analyze tensor- (32b and 16b tensor cores) and batch
core accelerated applications using Roofline size (16,32,64). Although tensor cores
= Used Roofline to analyze the forward and backward phases in ge:,;efrr:ix fheerz?r;'gs:lcfz’gfg:rmance
TensorFlow as a function of FP16 and FP32.
= TensorFlow cannot sustain the theoretical 125TF/s due to a
lack of locality and data permutation overheads. NeRsc)

Yang et al., “Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perimutter System”, CUG, 2019.

- A
rrrrrrr |"'|

BERKELEY LAB




LAGraph: A Community Effortto Collect = pAp/DS/
Graph Algorithms

ProjeCt Alms C/C++ Python R Java |+=+| Julia

— Bring together the full range of known graph algorithms
that can be constructed with the GraphBLAS. o Graph et

— GraphBLAST is the first high-performance GPU Uiliizs | Wl Aleaiins | REmess
implementation of GraphBLAS Z

— Systematically assess the coverage of graph algorithms GraphBLAS C API Bulld
based on linear algebra.

— Provide raw material in ongoing studies of the - - -.

fundamental design patterns exploited by linear algebra-

based graph algorithms LAGraph Project Overview

Algorithms Implemented to Date New Avenues for GraphBLAS
* Breadth-First Search, Shortest Paths « Graph neural network training/inference
Graph kernels for supervises learning

« A*search

* Triangle and k-truss enumerations .
« Connected Components, graph clustering

« Graph coloring, graph matching

» Collaborative filtering via Stochastic Gradient Descent

Tim Mattson et al. LAGraph: A Community Effort to Collect Graph Algorithms Built on
Top of the GraphBLAS, IPDPSW, 2019

% ~ A M Software Englneermg Institute

negieMellor




Anticipatory Data Delivery in Extreme Scale ?RA PIDS/
In-situ Workflows

Pattern Identification Inter-server Communication

Scientific Achievement P 6 ® ‘/ YY) @ s
Enables machine learning guided, anticipatory data O ’ ® ? ® ? ® ’ @ cio rovicaions
delivery for extreme-scale in-situ workflows to | B et D B ]

significantly reduce in data access costs. e / :

RDMA for Data Movement
Between Different Nodes

Slgnlflcance and Im paCt o Overview of DESTINY. The data is exposed to applications via
DESTINY can achieve a reduction of up to 75% and shared memory abstractions and delivered to the closest staging

53% in read response time, for collocated server before read-request is issued.
application processes and processes residing in
separate nodes, as compared to in-memory staging
service for production scientific workflows.

Hybrid-Staging
represents just exposing
data through shared
memory. Destiny-A
represents applications
residing on separate
nodes than staging and
Destiny-B represents

1.8
1.6

Research Details

» Uses n-gram machine learning model to anticipate
future data accesses, proactively packages and

Read Time for a Time Step (Sec)

delivers the data necessary to satisfy these requests as “HANE AN AN N NG _
: cna seaca  mrgea  acairg airg collocated staging and
Close to the consumer as poss|b|e_ 4:64:4 46464  4:128:64 4:64:128 4:128:128 ] )
No. of applications in Servers:Writers:Readers format appllcatlon processes'

» Amortizes expensive data discovery and assembly Ginmemory MHybrid-Staging S Desting-A  @Desting-B

operations in data staging. P

RUTGERS

ry Informatics Institute




In Situ Compression Artifact Removal in Scientific ?RA PIDS/

Data Using Deep Transfer Learning

Scientific Achievement

Developed a scalable in situ approach to train deep learning
models that leverage knowledge from different domains and
remove compression artifacts from lossy highly compressed
images that correspond to streaming scientific simulated data.

Significance and Impact
Introduces transfer learning and in situ learning paradigms
into deep learning-based compression artifact removal,
achieving superior accuracy and efficiency compared to
standard image compression and more advanced
compressed sensing methods.

Research Details

We adopt convolutional neural network based architectures - Enhanced Deep Super-
Resolution Network (EDSR) and Residual Dense Networks (RDN).

® These models are initially trained offline using the simulation data from climate domain
(shallow water equations on a sphere) with JPEG compressed image as input and the
original uncompressed image as the desired output.

® We adopt the discrepancy-based deep domain adaptation approach to transfer learn the
knowledge from offline-trained model to an in situ setting where the model is updated at
regular interval to adapt to data from different domain (Kinetic Transport).

® This approach is scaled by using data-parallel training with controlled learning rate
updates, thus the CAR model will be ready as soon as the simulation is complete.

JPEG

Original

Comparison of EDSR and RDN enhanced
images (using offline learning of Compression
Artifact Removal (CAR) model on climate data)
with JPEG compressed and compressed
sensing enhancement approach result.

128 7 4

| ST " Scalability of
Y o EDSR training with
number of GPUs

(batch size is 128).

1 2 4 8 16 32 64 128
Number of GPUs

S. Madireddy, In Situ Compression Artifact Removal in Scientific
Data Using Deep Transfer Learning.



Robust I/0O Performance Modeling by Automated ?RA PIDS/
Hardware/Software Change Detection . ...
ﬁfi ‘Hhi‘ (i u!' “, L i
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Scientific Achievement A".S ) H'

Developed a machine-learning-based /O performance

modeling approach that is robust to HPC system state changes | i

(e.g., hardware degradation, hardware replacement, software N \' | I ‘
upgrades). B

Significance and Impact
Automatically identifies hardware and software changes z

—]
that affect 1/0 performance in HPC systems and adapts our 0 g 5
performance model, allowing better prediction and N mps
. . . g - . - 0.0 02 AN 04 06 08 1.0
potentla_lly improving the system utilization and application Online method tHat monitors the change in the
scheduling. /0 performance of an application and adapt

the model to these changes

Research Details

* Online Bayesian detection to automatically identify the We use application l/O performance data

collected on Cori, a production supercomputing

location of events that lead to changes in near-real time system at NERSC, to demonstrate the
* Moment-matching transformation that converts the training effectiveness of our approach. The results show
data collected before the change to be useful for retraining. that our robust models obtain significant
. reduction in prediction error---from 20.13% to
* Approach demonstrated on I/O performance data obtained on 8.28% when the proposed approaches were
Lustre file system at NERSC. used in 1/O performance modeling.

S. Madireddy,et al. Adaptive Learning for Concept Drift in Application Performance Modeling, Preprint, ANL/MCS-P9132-0918, 2019.




Understanding How Deep Learning Models Operate ?RA p[DS/

Scientific Achievement
Allow developers of deep learning models to open the
black box to see how and why the DNN model
functions, so as to further optimize its performance

Significance and Impact
Explaining Al decision-making is a key challenge in

the adoption of Al algorithms in scientific activities.

Visual analytics approaches can play a crucial role
in explaining modern Al models.

Research Details
— Deep Visual Interpretation and Diagnosis for Image
Classifiers (DeepVID) is a model-agnostic approach
for interpreting and diagnosing images classifiers,
providing a rich user interface for understanding
convolutional neural networks (CNNs).

— DeepVID is one tool in a suite of tools being
developed for understanding Al models.
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Figure: DeepVID is a visual analytics interface for
understanding an image classifier based on variational
autodecoder (VAE). Our goal is to understand what
knowledge the neural network has acquired so as to perform
the image classification tasks. We visualize the various
aspects of the neural models that will help the developer
to optimize and diagnose the classification model.

TR Extreme-scale
OHIO| Distribution-based

Data

UNIVERSITY




...and more ...

~RAPIDS/

Thanks to the RAPIDS Team!
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This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program.
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For general questions: For engagement discussion:
Rob Ross <rross@mcs.anl.gov> Anshu Dubey <adubey@anl.gov>
Lenny Oliker <LOliker@lbl.gov> Sam Williams <swwilliams@lIlbl.gov>
On the web: ... or just reach out to the RAPIDS

http://www.rapids-scidac.org person that you already know!
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