SciDAC-2: Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

USC Priya Vashishta–PI, Rajiv Kalia, Aiichiro Nakano
Harvard Efthimios Kaxiras
Purdue Ananth Grama
Cal State Gang Lu
Los Alamos Stephan Eidenbenz, Arthur Voter
Livermore Randy Hood, John Moriarty, Lin Yang

• DOE-relevant science: Stress corrosion cracking resistance of nickel-based alloys crucial for next-generation energy systems
• Advanced computing: Scalable quantum molecular dynamics (QMD) & reactive molecular dynamics (RMD) simulations

“A Retrospective of SciDAC: Stories That Make Us Unique” Session
SciDAC PI Meeting
Rockville, MD, July16, 2019
Sulfur Segregation-Induced Embrittlement of Nickel

- Experiments found a crossover from transgranular fracture to intergranular fracture at a critical S concentration of ~15% at grain boundaries.

- The critical S concentration for embrittlement coincides with that for amorphization during ion implantation.

J. Heuer et al., *Appl. Phys. Lett.* 76, 3403 ('00)
M. Yamaguchi et al., *Science* 307, 393 ('05)

Q: How amorphization causes embrittlement?
Multiscale Simulation Challenge

Quantum accuracy at scale: RMD!

Molecular Dynamics (MD)

Reactive MD (RMD)

Nonadiabatic quantum MD (NAQMD)

First principles-based reactive force-fields

- Reactive bond order \{BO_{ij}\} → Bond breakage & formation
- Charge equilibration (QEeq) \{q_{ij}\} → Charge transfer

Tersoff, Brenner, Sinnott et al.; Streitz & Mintmire et al.; van Duin & Goddard (ReaxFF)
Highlight: Sulfur-Embrittlement of Ni

• SciDAC enabled unprecedented 48 million-atom RMD simulation on 163,840-processor IBM Blue Gene/P at Argonne, revealing a direct link between sulfur-induced intergranular amorphization & embrittlement

• Highlighted by Dr. William Brinkman, Director of Science, DOE, at the FY 2012 Budget Request to Congress for DOE’s Office of Science

48 million-atom RMD Simulations

- Ductile tearing (pure Ni) vs. brittle cleavage (with S)

Nickel (bulk)
Sulfur

With S

Pure Ni

Strain

Notch

150 nm

468 nm
Crossover of Fracture Modes

- Crossover from mixed intergranular (IG) & transgranular (TG) fracture in pure Ni to purely IG fracture with S, in agreement with experiments.

- Crossover from predominantly mode-I (opening) to mixed mode-I & II (opening & sliding) fracture with S.
Sulfur-Induced Amorphization of Ni

- Increased S concentration broadens peaks in pair distribution function $g(r)$
- The full-width at half-maximum of the first peak of $g(r)$ suddenly increases at 16% S doping, in agreement with the experimental amorphization threshold
- The bond angle distribution above the threshold resembles that of amorphous Ni

- Computed amorphization threshold (16%) is close to the percolation threshold (14%) for S impurities, considering the second nearest-neighbor S-S connectivity (3.5 Å ~ S-S interaction range mediated by lattice distortion)

RMD simulation of S doping in Ni crystal (random substitution)
Mechanism: Tensile-Strength Reduction

- RMD calculation of the effect of S segregation on Ni-GB tensile test: Ni $\Sigma 5(012)$ grain boundary without/with a monolayer of segregated S atoms

- S segregation-induced reduction of tensile strength (by 3.5 GPa, confirmed by QMD—4.6 GPa) supports experimentally-observed embrittlement

 M. Yamaguchi et al., Science 307, 393 (’05)

- However, the tensile-strength-reduction mechanism alone does not explain the relation between embrittlement & amorphization
New Mechanism: Shear Strength Reduction

RMD calculation of generalized stacking fault energy of $\Sigma 5(012)$ GB

- 17.3 GPa
- 2.5 GPa

- First link between S segregation-induced amorphization & embrittlingment: Reduction of GB shear strength due to amorphization provides a crack path
SciDAC Success: Summary

- Scientific mystery solved: How S-segregation-induced amorphization causes embrittlement of Ni in nuclear reactors?
- 48 million-atom SciDAC-RMD simulations provided the missing link: An order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path along grain boundary

Unique SciDAC Partnership

Full IBM Blue Gene/P simulation with quantum accuracy was only possible by unique SciDAC collaboration

- **Domain science:** QMD (Kaxiras, Lu), RMD (Kalia, Vashishta)
 QMD-accuracy reactive force fields (ReaxFF) for broad use

- **CS/math:** scalable parallelization (Nakano), efficient RMD solver & preconditioner (Grama)
 In-house & LAMMPS (Sandia) implementation for dissemination

- **Collaboration with ASCR SciDAC institute:** performance tuning with Bob Lucas–PI, Mary Hall & Jacque Chame at Performance Engineering Research Institute (PERI)

Cross-SciDAC joint publications
B. Bansal et al., *IPDPS* ('07)
Y. Nelson et al., *ibid.* ('08)
H. Dursun et al., *J. Supercomp.* 62, 946 ('12)
SciDAC Impact

SciDAC partnership established a metascaleable (or “design once, scale on future architectures”) computing framework for quantum accuracy at scale

- **Shift-collapse (SC) computation of dynamic n-tuples for RMD with provable minimum computation & communication**
 M. Kunaseth et al., ACM/IEEE Supercomputing, SC13

- **QMD with parallel efficiency 0.984 & 51% of theoretical floating-point performance on 786,432 IBM Blue Gene/Q processors**
 K. Nomura et al., IEEE/ACM Supercomputing, SC14
SciDAC impact: quantum accuracy at scale

BASIC ENERGY SCIENCES

EXASCALE REQUIREMENTS REVIEW

An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

16,661-atom QMD
Shimamura et al., Nano Lett. 14, 4090 ('14)

Hydrogen on demand on 786,432-processor IBM Blue Gene/Q

10^9-atom RMD
SciDAC impact: quantum accuracy at scale

BASIC ENERGY SCIENCES

EXASCALE REQUIREMENTS REVIEW

An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences

16,661-atom QMD
Shimamura et al., *Nano Lett.*
14, 4090 ('14)

Cavitation bubble collapse in water (SciDAC2-SCC)

10⁹-atom RMD
Shekhar et al., *Phys. Rev. Lett.*
111, 184503 ('13)
SciDAC Impact into Future

- One of the 10 initial simulation users of the Nation’s first exaflop/s computer, A21

- Metascalable 10^5-atom QMD & 10^{12}-atom RMD simulations on A21 integrated with next-generation X-ray free electron laser (XFEL) experiments at LCLS-II to study ultrafast material processes at exactly the same space & time scales

Preliminary advanced-computing + XFEL synergy:
I. Tung et al., Nature Photon. 13, 425 (’19)
SciDAC partnership between domain science + CS + math enabled full-leadership-computer simulation with quantum accuracy, solving a critical scientific problem of DOE relevance—stress corrosion cracking resistance of nickel-based alloys