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FASTMath brings leading edge computational 
mathematics to the SciDAC Program

Develop advanced, robust 
numerical techniques for DOE 
science applications
• Eight focused topical areas based 

on application needs
• High level synergistic techniques

Deploy high-performance 
software on DOE 
supercomputers
• Algorithmic and implementation 

scalability
• Performance portability

Demonstrate basic research 
technologies from applied 
mathematics
• Build from existing connections 

with basic research
• Focus on results that are most 

likely to meet application needs

Engage and support the 
computational science 
community
• Publications and presentations in 

highly visible venues
• Team tutorials
• Workforce pipeline and training
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FASTMath is Architecture-aware

Algorithms for multicore & GPU
§ GPU-enabled mesh adaptivity 
§ Semi-structured multigrid 

methods
§ Parallel-in-time time integration

Reducing data movement
§ Low-communication Poisson 

solvers
§ Asynchronous smoothers and 

preconditioners
§ Data reordering in tri-diagonal 

solvers
§ MPI task placement for reduced 

communication

Exploiting performance-portable 
paradigms
§ Kokkos-based distance-2 coloring 

for multigrid aggregation in 
KokkosKernels

§ GDSW preconditioners for 
domain decomposition methods 
using Kokkos

§ Asynchronous multitasking (AMT) 
for UQ ensembles using Legion

Partitioning effectively and 
efficiently
§ GPU and KNL enabled graph 

partitioning for unstructured 
meshes

§ Spectral graph partitioning and 
sparse matrix ordering

Algorithmic and performance-oriented R&D on next-generation 
architectures is key component of FASTMath



FASTMath is Partnership-aware:
actively engaged with 23 SciDAC-4 partnerships

BER (5/8)

• Structured AMR
• Unstructured AMR
• Time integration
• Linear/Nonlinear 

solvers, 
Preconditioners

• Optimization
• Verification / UQ

FES (9/9)

• Unstructured 
meshes AMR 

• Unstructured mesh 
PIC methods

• Discretization 
technologies

• Iterative solvers
• Time integration
• UQ

HEP (3/5)

• Direct solvers
• Structured Grid AMR
• Optimization
• Sensitivity Analysis
• Inference and 

machine learning

NP (2/3)

• Structured grid AMR
• Eigenvalue problems
• Inference and 

Machine Learning

BES (3/4)

• Nonlinear and tensor 
eigenvalue problems

• Linear solvers and 
Preconditioners

NE (1/1)

• UQ
• Time integration



FASTMath is focused on eight core 
technology areas
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FASTMath brings together an exceptional team 
of researchers and software library capabilities

Our team comprises over 50 
researchers from 5 national 

laboratories and 5 universities

Our software has 100s of 
person-years of development 

behind it

mfem
PETSc

zoltan

SuperLU

AMReX

PARPACK



FASTMath team
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§ Goal: Provide software support for efficient 
parallel solution of a large variety of problems 
in science and engineering using block-
structured adaptive mesh approaches

§ Technologies:  adaptive mesh refinement, 
high-order discretizations, mapped multi-block 
domains, dynamic load balancing, particle 
dynamics

§ Software: AMReX, Chombo, Algoim

§ SciDAC-4 Partnerships:
• NP:  TEAMS 
• BER:  ProSPect
• FES:  AToM
• HEP:  ComPASS

Structured Grid Spatial Discretization

Astrophysics (Castro)

Cosmology (Nyx)

Accelerators (WarpX)

Combustion (LMC)

§ Area Lead:  Ann Almgren ASAlmgren@lbl.gov

mailto:ASAlmgren@lbl.gov


In structured AMR, embedded boundary methods 
address dynamically changing geometries 

Embedded Boundary/Multifluid 
approach for tracking ice boundaries 
in ProSPect BISICLES
▪ Location of transition from grounded to 

floating ice is dynamically important 
▪ Space-time formulation: Development case 

implemented in 1D, with extension to 2D in 
progress

Representing a grounding line using 
stair-step (left) and embedded-
boundary (right) discretizations

ice velocity

Grounding lines can move arbitrarily fast depending on 
bathymetry and ice thickness à contact point problem



High-order mapped multiblock methods enable 
first-of-kind tokamak computations for COGENT

§ Fourth-order finite 
volume  methods

▪ High-order ghost value 
interpolation

▪ Flux-matching at block 
boundaries

First-ever 4D continuum gyrokinetic 
simulation capability for problems in 
the edge plasma region of tokamak 
reactors that spans both sides of the 
magnetic separatrix 
▪ FASTMath’s mapped-multiblock software 

discretizes PDE in a nearly field-aligned 
coordinate system

186 P. McCorquodale et al. / Journal of Computational Physics 288 (2015) 181–195

Fig. 5. Interpolation stencils for four sample ghost cells in the 2D multiblock disk geometry of Fig. 3. Two layers of ghost cells of block 2 are shown with 
dotted blue lines, and four of these cells, marked (a) through (d), are indicated with thicker blue outlines. The shaded cells around each of these ghost cells 
correspond to the interpolation stencil of the ghost cell. Further details on these four stencils are shown in Fig. 6.

Fig. 6. Close-up views of the stencils of the four ghost cells (a) through (d) shown in Fig. 5. In each case above, the ghost cell is indicated by g and is shown 
with a dashed outline in blue, the color of block 2. The center of g is marked with a blue ∗, and the valid cell that contains this point is v g , defined in 
Step 1 of Section 3.1. Here v g is indicated with a thicker outline, as is c g , which is defined in Step 2. Stencil cells are shaded the color of their respective 
blocks. The cells of the inner set N inner(g), defined in Step 3, are marked with a dashed brown outline around the whole set, and the remaining stencil 
cells belong to the outer set N outer(g) as defined in Step 4. Note that in cases (a), (b), and (c), v g and c g are the same cell, and N outer(g) has four cells, 
but in case (d), c g is a cell adjacent to v g because v g itself is on the external boundary, and N outer(g) has only three cells for the same reason. Also note 
that the inner set N inner(g) has nine cells in cases (a), (c), and (d), but only eight cells in case (b), because in case (b), the central cell cg is at a corner of 
block 0 (colored black), where block 0 meets only two other blocks.

extend the domain of each block smoothly such that the extended grid contains enough control volumes to evaluate fluxes 
on all faces of the original block.

We extend the domain of each block D in computational space with ghost cells, which are control volumes of the form V i
of (1) that lie outside D. Figs. 5–6 show two layers of block-boundary ghost cells of block 2 outlined with dotted blue lines 



Unstructured Mesh Spatial Discretization
§ Goal: Deliver scalable, high-performing unstructured 

mesh tools to support applications with complex 
geometries

§ Technologies:  Unstructured mesh adaptation, 
parallel unstructured mesh infrastructure, high-order 
discretizations, error estimation, load balancing, task 
mapping, graph algorithms, PIC methods

§ Software:  Albany/LGR, EnGPar, MFEM, 
MeshAdapt, Omega_h, PHASTA, PUMI, PUMIpic, 
PuLP/XtraPuLP, Zoltan/Zoltan2

§ SciDAC-4 Partnerships and Other Interactions:
• FES:  PSI2, HPBS, RF, CTTS, TDS, SCREAM
• BER:  DEMSI, ProSPect
• BER:  E3SM and CMDV
• BLAST, LGR, ATDM, ASC

§ Area Lead:  Mark Shephard (shephard@rpi.edu)



FASTMath provides unstructured mesh 
technology to Six Fusion SciDAC partnerships

Unstructured mesh capabilities provided:
§ New physics discretization technologies
§ CAD model simplification 
§ Mesh generation with specific mesh controls
§ High-order adaptation for curved geometries
§ Adaptive simulation workflows 
§ Dynamic load balancing
§ Mesh infrastructure for finite element assembly
§ New unstructured mesh PIC method

MFEM EM analysis of vacuum 
region on ~1M element mesh of 
RF CAD, wall geometry and flux 
surfaces

PUMIPic tools for Particle-in-Cell methods
▪ GPU- and multicore-optimized mesh and 

particle data structures 
▪ Distributed mesh with overlapping domains for 

on-processor particle push



Unstructured mesh infrastructure simplifies 
data analysis, adaptive UQ control, and 
extraction of fundamental insights from 
simulations 
▪ Challenging due to complex geometries, discretization 

size, number of uncertain input parameters
▪ New tools for computational steering, multi-fidelity 

modeling and in situ visualization

Data analysis and graph algorithms contribute to 
success of unstructured mesh applications

Graph biconnectivity algorithms enable ice 
sheet simulations for ProSPect MALI
▪ Parallel algorithms detect degenerate mesh 

features; enable solver convergence without 
expensive pre-processing

▪ Best paper award at 2019 Int. Conf. Parallel 
Processing

Hinged
Peninsula

Iceberg

Adapted mesh Adapted order

Expectation Variance

Joint adaptivity



Unstructured mesh technologies are advancing 
for efficiency on next generation systems

Accelerator-enabled unstructured mesh 
procedures
▪ Novel data structures and algorithms for irregular 

memory access patterns in graphs, meshes, and PIC
▪ Built on performance-portable paradigms (e.g., 

Kokkos, Raja) for “future proofing”

Architecture-aware task 
placement and partitioning 
▪ Reduces application communication 

time by placing interdependent tasks 
in “nearby” cores

Zoltan2 task placement reduces 
communication time in the E3SM HOMME 
atmospheric modeling up to 31% on Mira

GPU-accelerated mesh adaptivity enables use of 
single GPU to evaluate designs that previously 

required more time on large CPU clusters



§ Goal:   Providing efficient direct and iterative linear 
solvers and preconditioners for large scale parallel 
computers

§ Technology:  linear solvers and preconditioners 
(direct, iterative, dense, sparse); multigrid methods

§ Software: KokkosKernels, hypre, MueLu, PETSc, 
Trilinos, ShyLU, STRUMPACK, SuperLU, symPACK, 
ButterflyPACK

§ SciDAC-4 Partnerships and Other Interactions
• BER:  ProSPect
• HEP:  ComPASS
• FES:  HBPS, SCREAM, ISEP, CTTS
• BES:  Computational Chemical Sciences Program
• BER:  E3SM
• ATDM, ASC

§ Area lead: Ulrike Yang (yang11@llnl.gov)

Linear Solvers
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Focus on architecture-aware solvers prepares 
FASTMath solver libraries for next generation systems

KokkosKernels performance-portable 
sparse/dense linear algebra and graph 
kernels for CPUs, GPUs, KNLs
§ Batch BLAS, coloring, SpMM, SpMV, etc.

1

Linear Algebra Kernels Graph Kernels

Kokkos Kernels

Kokkos Core
Parallel

Execution
Parallel Data 

Structures

Applications

Kokkos EcoSystem

Numerical librariesKokkos 
Tools

Debugging

Profiling

Kokkos 
Support

Tutorials

Bootcamps

App support

Documentation

Tuning

Domain decomposition preconditioners 
in ShyLu built on Trilinos’ Tpetra
software stack
§ Performance portability from Kokkos

Semi-structured multigrid methods in 
hypre
§ Suitable for high levels of parallelism 

as in GPU



Focus on architecture-aware solvers prepares 
FASTMath solver libraries for next generation systems

Spectral sparse matrix ordering built on 
communication avoiding eigensolvers
§ High quality benefits direct solvers

Localizing nonzeros in sparse matrix 
factorizations 
§ Higher computational efficiency in 

sparse triangular solves in symPACK
A sketch of the column reordering heuristic:
columns adjacent to descendants are brought
together, forming larger contiguous blocks

Time
(sec)

Number of cores

Strong scaling Poisson solver for structured AMR with 
1/10th the communication cost
§ New representation of nonlocal coupling



t = 5000

§ Goal: Efficient and robust time integration methods 
and software for stiff implicit, explicit, and multirate
systems in DOE applications

§ Technologies: explicit/implicit/IMEX time 
integration, multirate methods

§ Software: SUNDIALS,  PETSc adjoint integration, 
Spectral Deferred Correction in AMReX

§ SciDAC-4 Partnerships and Other Interactions
• BER: Physics Convergence
• NE:  NUCLEI
• FES: MGK
• BER: E3SM, ParFlow watershed simulation 
• FES:  BOUT++ 
• OE: GridDyn
• EERE:  Zero-RK, PELE
• ATDM, ASC

Time Integration

Baroclinic instability atmospheric 
climate simulation using 
SUNDIALS with the Tempest  
nonhydrostatic simulation code

Combustion

Engine fuel 
simulation 

using 
SUNDIALS 

for fuel 
efficiency 

studies

Gray-Scott 
solution showing 
pattern formation 
on a 2-level AMR 
grid using 
SUNDIALS’ 
multirate
integration

§ Area Lead: Carol Woodward (woodward6@llnl.gov)



New multirate time integration addresses needs 
of multiphysics applications

Multiphysics/multiscale simulations are 
limited in accuracy due to commonly 
used first order splittings
§ E.g., climate, combustion, fusion

High-order multirate integration 
advances different parts of systems 
with different time step sizes
§ Reduce computation and communication:  

fewer function evaluations for slow terms
§ Delivered in SUNDIALS ARKode
§ Demonstrated in AMReX structured AMR 

framework

Two-rate integration method showing 
the coupling between the fast and slow 
methods in an MIS algorithm for a third-
order explicit slow method

!" = $%&'( ! + $*+,- !

Fast

Slow!./0 12 13 !.

4./2/3 4./0/3 4.4./0

60 62 63

Same solution quality with 85% fewer 
advection evaluations for Brusselator
advection-reaction system

IMEX Multirate
Steps 6,805 1,429 / 8,813
Advection evals (slow) 29,379 4,288
Reaction evals (fast) 98,917 116,949



New adjoint time-stepping gives rise to new PDE 
constrained optimization tool in PETSc / TAO

New tool for PDE-constrained optimization
§ Applications: Global data assimilation, power 

system planning and operation
§ Adjoint time-stepping schemes give 

consistent gradients for time-dependent 
PDEs, leading to faster optimization 
convergence and better accuracy

§ Implementation allows multiple objective 
functions and time intervals

Variational data assimilation for a 
global shallow water model

Optimal economic dispatch for 
dynamic power system



§ Goal: Develop algorithms and scalable software for linear 
and nonlinear eigenvalue problems

§ Technologies: Efficient eigensolver algorithms; scalable 
multicore and GPU implementations

§ Software: FASTEig eigensolver collection

§ SciDAC-4 Partnerships and Other Interactions:
• BES:  CompCat-SciDAC
• NP:  NUCLEI 
• BES:  Quantum Coherence EFRC
• BES:  Computational Materials Science Center
• BES:  Computational Chemical Science Center

§ Area Lead: Chao Yang (CYang@lbl.gov)

Eigenvalue Calculations



Eigensolvers enable new discoveries in material 
science

Solving nonlinear eigenproblems from DFT 
based electronic structure calculations 
▪ Spectrum-slicing method provides greater 

scalability above 5K cores than ELPA, 
ScaLAPACK

E
sub-interval k sub-interval 1 sub-interval 2 

New matrix-free iterative tensor eigensolver is 
capable of computing interior eigenvalues of 
disordered Heisenberg spin chains with more than 
28 spins
▪ Previous record:  26 spins
▪ Enables study of many-body localization and 

thermalization properties of quantum materials
▪ Near perfect on-node scaling to 68 KNL cores for > 

20 spins
On-node performance of tensor eigensolver on 
Cori-KNL. For large spin chains, we can achieve 
70-fold speedup (68 cores x 4 hyperthreads/core)



Model Order Reduction speeds electron 
excitation simulation by orders of magnitude 

Modeling linear response of molecular system to light (photons)
▪ Full-system approach requires solving thousands of  linear systems 

from samples of spectral function on fine spectral grid
▪ Model order reduction approach needs fewer than 100 linear solves 

using rational Krylov subspace of dimension less than 100
▪ Can reduce execution time several orders of magnitude

Experimental observations

Full-system method

MOR method  



§ Goal: Sparse functional representation of data to 
enable faster IO and analysis of big datasets 

§ Technology:  Data compression, data 
reconstruction, machine learning workflows

§ Software tools: Tasmanian, PUMI, TAO, Phasta, 
Catalyst

§ SciDAC Applications and Other Interactions:
• RAPIDS Institute
• FES

§ Area Lead: Rick Archibald (ArchibaldRK@ornl.gov)

Data Analytics 

Accurate Synthetic aperture 
radar reconstruction

Super Resolution methods 
for experimental data

SummitITER
Developing workflows and ML 
methods to accelerate discovery 
and validation in simulation and 
experimental data

mailto:ArchibaldRK@ornl.gov


in situ Visualization unlocks unsteady dynamics 
at extreme scale

Comparison to experimental results.

In situ visualization allows comparison of 
instantaneous vortical structures with phase-
averaged quantities from experiments and 
simulations
▪ Isosurface construction at each time step adds 3% 

overhead to simulation – far less than writing full 
data

▪ Collaboration with RAPIDS Institute



Reconstruction methods benefit and exploit 
multiple FASTMath technical areas

MGARD-Multigrid Adaptive 
Reduction of Data 
▪ Reconstruction of simulation data 

preserves physical dynamics or 
quantities of interest to a pre-
described tolerance level

Compression and 
Reconstruction of Streaming 
Data via dictionary learning
▪ Matrix factorization approach

Original and reconstructed data from online dictionary learning



§ Goal: Develop methods for numerical optimization problems with 
constraints and for sensitivity analysis using adjoint capabilities

§ Technology: PDE-constrained optimization, sensitivity analysis, 
adjoints

§ Software: MATSuMoTo, MINOTAUR, ORBIT, ROL, TAO

§ SciDAC-4 Partnerships:
• NP:  NUCLEI
• HEP: ComPASS,  Accelerating HEP Science, Data Analytics on HPC
• BER: ProSPect

§ Area Lead: Todd Munson (tmunson@mcs.anl.gov)

Numerical Optimization



Preferential parameter selection speeds 
optimization of large-scale black-box problems 

We consider large-scale, black-box, multimodal, time consuming optimization

• Reduce the problem dimension by sensitivity analysis on a surrogate model
• In each iteration, optimize only over the most sensitive (important) 

parameters
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Figure: 100-dim test example.
Preferentially optimizing over the most 
important parameters leads to finding 
improved solutions faster  than optimizing over 
all parameters

Future applications include 
the optimization of high 
energy physics simulations



A Mixed-Integer PDE-Constrained Optimization (MIPDECO) 
Method for the Design of an Electro-Magnetic Scatterer

New mixed-integer PDE-constrained 
optimization (MIPDECO) methods 
optimize design of an electro-
magnetic scatterer to cloak a region 
§ Set-based steepest-descent trust-

region method for MIPDECO 
§ Promising numerical results and 

theoretical foundations
MIPDECO Formulation

Scatterer Difference of Waves

Example: Design of electro-magnetic scatterer
§Objective: Cloak the top-right corner
§PDE: 2D Helmholtz equation
§Discrete variables: 0-1 design of scatterer

(cloaking device)



§ Goal: Provide robust and efficient capabilities for 
uncertainty quantification in large-scale computations of 
physical systems.

§ Technologies: Forward and inverse UQ, Bayesian 
learning, model error, multifidelity methods, optimization 
under uncertainty

§ Software: DAKOTA, UQTk

§ SciDAC-4 Partnerships and Other Interactions:
• FES: Plasma surface interactions
• NE: Fission gas in uranium oxide nuclear fuel
• BER: OSCM
• BER: ProSPect
• EERE: redox potentials, A2e
• BES:  experimental design, E3SM
• NSF, NNSA, DARPA

§ Area Lead: Habib N. Najm (hnnajm@sandia.gov)

Uncertainty Quantification



FASTMath UQ research is addressing challenges 
of high-dimensionality in applications

Efficiently building surrogates of high-dimensional models is difficult

Seeking low-rank functional tensor-train representations that reveal 
coupling in high-dimensional models 

Applications:
▪ Optimizing sensor networks for improving climate model predictions 

(E3SM)
▪ Estimate uncertainty in sea-level rise predictions due to ice-sheet 

evolution (ProSPect)

L22/ 7Q` +QMiBMmQmb hh 2ti2MbBQMb

Ç .Bb+`2i2f�``�v #�b2/ `2T`2b2Mi�iBQMb Q7 7mM+iBQMb Bb HBKBiBM;
Ç *QKTmi�iBQM rBi? 7mM+iBQMb Q7 /Bz2`BM; /Bb+`2iBx�iBQMb
Ç :`B/ �/�Ti�iBQM Bb MQM@i`BpB�H- i2MbQ` T`Q/m+i ;`B/b �`2 Q7i2M r�bi27mH
Ç GQ+�H BM7Q`K�iBQM �#Qmi bKQQi?M2bb- /Bb+QMiBMmBiB2b- 2i+X- MQi mb2/

Ç � +QMiBMmQmb 2ti2MbBQM, i2MbQ`@i`�BM → 7mM+iBQM@i`�BM
Ç AK�;BM2 /Bb+`2iBxBM; � 7mM+iBQM rBi? BM}MBi2 TQBMib BM 2�+? /BK2MbBQM

f(x1, x2, :, x4) =

Re

E3SM Simulation Tensor-train Schematic Total Order Sensitivities



Advances in Bayesian Methods increase 
accuracy and robustness of UQ tools

32

UQ framework incorporating model error enables predictive 
uncertainty attribution due to BOTH data and model errors
§ Implemented in UQTk; used in DOE fusion science and land model

MCMC with local surrogates when global surrogates are infeasible
§ Guaranteed convergence for heavier-tailed distributions broadens 

robustness and applicability

Likelihood distance metrics for parameter 
estimation in chaotic dynamical systems
§ Diffusion-map distance between densities 

defined in manifold coordinates

Density of points (in 2D diffusion-map 
coordinates) from Lorentz 63 system



Prototyping next generation AMT management 
of UQ ensembles with Dakota + Legion

Prototype ensemble management based on 
Asynchronous Many-Task (AMT) systems 
using Dakota + Legion. 

• Exploit large-scale hybrid architectures
• Dependency-driven task management 

eliminates artificial synchronization and 
streamlines workflows

Joint Capability Roadmap for AMT ensemble 
management

Modular architecture for Dakota-MPI, Dakota-X, 
Py-Dakota, …

Joint work with Stanford PSAAP2



FASTMath is focused on eight core 
technology areas
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§ Machine learning is built on core technologies in FASTMath:  
UQ, Linear Algebra, Optimization, Statistics, Data Analytics
• Linear regression, regularization, SVD, PCA, probabilistic 

methods, stochastic steepest descent, risk minimization, 
Bayesian statistics, network inference, ……..

§ FASTMath advances in algorithms, models, computation, 
performance are directly applicable
• Ex:  Neural networks often viewed/used as surrogate 

representations of model output as function of set of inputs
- Surrogates broadly used in optimization and UQ
- Neural network training equivalent to surrogate 

fitting/regression
• Ex:  GPU-enabled linear algebra kernels accelerate deep 

neural network computations

FASTMath has expertise needed for Machine 
Learning research and development



FASTMath researchers’ efforts (through FASTMath or other projects):
§ Co-organize annual Machine Learning and Uncertainty 

Quantification workshops at USC (UQ)
§ Neural network surrogates for the E3SM land model: 2X more 

accurate vs sparse regression polynomials (UQ)
§ Deep learning for compression artifact removal (Data analytics)
§ ML for Fusion research workflows (Data analytics)
§ Modeling and solvers for goal-oriented ML-based regression 

(Numerical Optimization)
§ KokkosKernels used in 2019 DARPA Sparse Deep Neural Network 

Challenge submission (Linear solvers)
§ Performance-portable batch operations in KokkosKernels (Linear 

Solvers)
§ Graph expertise relevant to ML in biology and material science 

(Unstructured Mesh, Linear Solvers)
§ Expanding support for deep neural networks in Dakota's surrogate 

libraries (UQ)
§ Distributed-memory sparse tensor decomposition 

FASTMath’s research and technology support 
machine learning



§ HEP: Accelerating HEP Science: Inference and Machine 
Learning at Extreme Scales

§ HEP: Data Analytics on HPC
§ NP:  NUCLEI (Deep learning for ab initio nuclear theory)
§ RAPIDS Institute
§ DARPA: Probablistic Machine 

Learning for physics discovery
§ ECP: ExaLearn and ExaGraph
§ IBM:  Bayesian neural networks 

for yield-aware decision making

Several ML-related collaborations underway by 
FASTMath researchers

Collaboration with RAPIDS:
Deep-learning based compression 
artifact removal provides fast 
enhancement compared to state-of-
the-art compressed sensing (CS)

Barotropic instability test Enlarged region

JPEG 
Compression

Enhanced deep 
super-resolution 

Network

TV Compressed 
Sensing

Residual Dense 
Network



Visit the FASTMath posters

Optimizing Computationally Expensive Large-scale Black-box Problems Juliane Mueller
Unstructured Mesh Technologies for Fusion Simulation Codes Mark Shephard
MFEM - Scalable Finite Element Methods Mark Stowell
UQ Software Mike Eldred
Data Analytics Activities Rick Archibald
Multilevel Linear Solvers Ruipeng Li
Structured Grid Activities Hans Johansen
FASTMath Overview E. Ng; K Devine

Time Integration Activities Carol Woodward
Eigensolvers Activities Chao Yang
Unstructured Meshing Technologies Dan Ibanez; Mark Shephard
UQ Algorithms Habib Najm
Kokkos Kernels and Linear Solvers Siva Rajamanickam
Numerical Optimization Activities Todd Munson
Fast and Parallel Direct Linear Solvers Yang Liu
Numerical Optimization Activities Todd Munson
FASTMath Overview Esmond Ng; Karen Devine

Tuesday

Thursday



RAPIDS + FASTMath Collaboration
Application Performance
§ 3-9x faster triangular solves in CTTS 

tokamak simulations on KNL
§ MPI communication and on-node 

parallelism optimizations for DGDFT 
density functional theory computation

§ New low-memory PETSc solver 
interface for Xolotl cluster dynamics 
code

Numerical Library Performance
• New structured adaptive mesh 

refinement support in DIY data 
analysis toolkit

• Participation in NERSC Roofline 
training workshop

• Explore GPU acceleration for ODEs 
in AMReX

Data Analysis
• Deep convolutional neural networks 

for fast artifact reduction in lossy 
compressed images

• Machine learning as a coupler 
between simulation and experiments

• Parallelization approaches for deep 
learning training on leadership-class 
systems

Visualization
• In situ visualization demonstrated in 

fluid dynamics simulations at > 1M 
cores

• Computational steering to allow real-
time analyst control of simulations

• Fast, low-memory in situ visualization 
of high-order fields in unstructured 
meshes

See posters on these collaborations both days!
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