Nonlinear Collision becomes Practical from Multi-Threading PI: C.S. Chang, Fusion SciDAC Center for Edge Physics Simulation (EPSI)

ASCR- SciDAC Highlight: Three-way collaboration among SUPER, FASTMath, and Fusion-EPSI

Objectives

 Develop nonlinear Fokker-Planck-Landau collision operation on the highly non-Maxwellian edge plasma for the first time.

Impact

Accomplishment highlight

 Higher fidelity prediction for ITER's fusion performance by accounting for nonequilibrium edge plasma

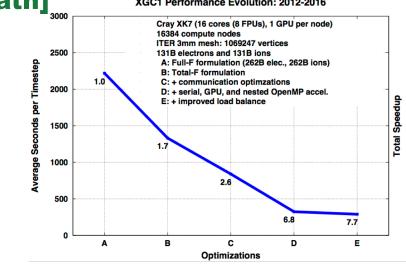
	Main loop time	Collision routine time
Multi threaded collision	200 s	32 s
Single threaded collision	340 s	171 s

Challenges

- New nonlinear Fokker-Planck collision solver has been developed in EPSI for fusion kinetic codes but initial implementation in XGC1 proved impractical: *New collision solver nearly doubled total compute time of XGC1*
- Insufficient work in a single grid cell to fully exploit OpenMP multi-threading capability of XGC1
- Effective OpenMP across grid cells needs to include Picard iteration, which solves many small sparse linear systems (currently using PETSc, not thread-safe)

Solution

- Thread-safe version of PETSc created by FASTMath (B. Smith)
- Multi-threaded nested OpenMP parallelization across grid cells achieved in collaboration with SUPER (E. D'Azevedo, P. Worley)
- Collision solver accelerated by over 5X, and XGC1 by 1.7X


LEADERSHIP

National Laboratory COMPUTING FACILITY

Performance Evaluation and Analysis Consortium End Station: [XGC, SUPER & FASTMath] XGC1 Performance Evolution: 2012-2016

Science Objectives

- Enable ITER simulation on Titan by XGC kinetic code
- Develop new programming models and runtime systems
- Update and extend performance evaluation of Leadership Class (LC) systems
- Port, further develop, and make available performance tools and middleware on LC systems
- Develop and validate performance prediction technologies
- Analyze and help optimize LC applications codes

Performance of XGC1 ITER simulation on Titan as a function of algorithmic improvements.

OLCF Contribution

Have OLCF resources such as hardware resources, liaisons, user support, data resources, training, website, etc. contributed thus far to the success of the project?

- Science experiments using XGC1 are feasible only on the full Titan system.
- OLCF system staff have been vital in identifying hardware and software issues that cause failures in XGC1 runs, and in proposing workarounds and improving fault tolerance.

Science Accomplishment and Impact

- In a collaboration between the EPSi SciDAC projects and the SUPER & FASTMath SciDAC institute, documented a greater than 7.6 times performance improvement in the XGC1 particlein-cell code on Titan over the past 4 years, due to
 - New formulation, requiring half as many particles
 - New parallel algorithm, significantly decreasing interprocess communication overhead
 - Port of primary particle computation kernel to GPU
 - Serial and parallel implementation improvements in nonlinear collision
 operator
 - New hybrid load balancing scheme
 - I/O enhancement not included