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CompFUSE: Computational framework for unbiased studies of correlated 
electron systems
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Advanced simulations of 
correlated quantum materials, 

including unconventional 
superconductors and 
quantum spin liquids.
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Fig. 1: Coarse-graining of momentum space: At the heart of the DCA method is a partitioning

of the first Brillouin zone into Nc patches over which the Green’s function is coarse-grained

(averaged) to represent the system by a reduced number of Nc ”cluster” degrees of freedom.

The bulk degrees of freedom not included on the cluster are taken into account as a mean-field.

For Nc = 1, the dynamical mean-field approximation is revovered, while for Nc ! 1, one

obtaines the exact result. For a given cluster size Nc, one can have different locations and

shapes of the coarse-graining patches, as illustrated for Nc =16A and 16B.

degrees of freedom, but instead uses coarse-graining to retain information about the degrees
of freedom not contained on the cluster. In the Appendix, we provide a rigorous derivation of
both the DCA and DCA+ algorithms based on approximations of the grand-potential. In the
following, we give a more physically motivated discussion of these algorithms.

2.1 General formalism

To coarse-grain the degrees of freedom, the Brillouin zone is split into Nc patches of equal size.
As illustrated in Fig. 1, each patch is represented by the cluster momentum K at the center of
the cell and a patch function

�K(k) =

8
<

:
1, if k in patch K.

0, otherwise.
(9)

is used to restrict momentum sums over momenta k inside the Kth patch. There can be different
numbers Nc of patches, with different size and shape. The basic assumption of the DCA then
is that the self-energy is only weakly momentum dependent, so it can be approximated on a
coarse grid of K-points of a finite size cluster

⌃(k, i!n) ' ⌃c(K, i!n) . (10)

Since the self-energy describes energy shift and life-time effects due to the interaction of an
electron with other electrons, the dynamics of which is represented by the Green’s function
G(k, i!n), it is generally a functional of G(k, i!n), i.e. ⌃(k, i!n) = ⌃[G(k, i!n)]. In finite
size methods, the degrees of freedom are reduced to those of a cluster by calculating the self-
energy from the cluster Green’s function, i.e. ⌃c(K, i!n) = ⌃c[Gc(K, i!n)]. In contrast, in the
DCA, all the degrees of freedom of the bulk lattice are retained, by calculating the self-energy

Development of accelerated 
algorithms based on DQMC, 
DCA and DMRG and efficient 

implementations on leadership 
class supercomputers.

Fig. 4 provides a qualitative comparison of the results of our AB-ResNet method and the MaxEnt
method where we plot three samples from test set for illustration purposes. In these examples, both
methods predict A(!) accurately for the lowest level of noise. However, at noise ✏ = 10�2, MaxEnt
is not able to recover the peaks in the predicted spectral function. While in the case of AB-ResNet,
our model is able to correctly identify most peaks. Hence, it clearly shows that our AB-ResNet
model generates better results compared to the classical MaxEnt. Fig. 5 shows the comparison of the
prediction between each AB network model from three different samples. The average mean absolute
error on the test dataset are 6.8e� 4, 3.8e� 4, 2.6e� 4 for AB1, AB2 and AB3, respectively. This
is consistent with the numerical ODE. That is, higher step method provides higher accuracy results.
Then, we studied the computational efficiency of our model compared to MaxEnt. AB-ResNet model
allows a direct mapping between Green’s function and the spectral densities. In contrast, the MaxEnt
method is an iterative method which requires generating trail functions until convergence is reached.
For the computation cost, the CPU time for AB-ResNet model is O(10) second while for MaxEnt
is O(103) second. So, the new model is more computationally efficient than compared to MaxEnt
method.

Figure 4: The predicted spectral density function A(!) from AB3-ResNet and Maxent (dark line).
The top row are the results from dataset with noise level 10�2, the bottom row results obtained from
the dataset under noise level 10�3

Figure 5: The comparison of predicted spectral function between 2S-ResNet (red) and standard
Neural Net (dark)

5 Conclusions

In summary, we have developed the Adams-Bashforth ResNet that solves the kernel inversion with
noisy data for the analytic continuation problem. The numerical experiments show that our AB-
ResNet model can recover the spectral function with an accuracy similar to that of the commonly
used maximum entropy approach under low levels of noise. The new model gives much better results
than MaxEnt under high levels of noise at a fraction of its computational cost. Adding more training
data and using larger step network architecture could further improve the model performance. Other

6

ODE in (8). Note that the time step size �t in the fully discretized ODE Xt+1�Xt

�t = F (Xt), is
implicitly absorbed by the residual module in the original formulation of ResNet (4). Instead, we
intend to use a multistep Adams-Bashforth (AB) method to discretize (8). As mentioned before, the
standard ResNet can be considered as the forward Euler discretization, whereas multistep AB method
has higher accuracy in numerical methods of ODE [2]. The fully discretized schemd is shown in
Fig. 1 and

Figure 1: Two step neural network

Xt+s = Xt+s�1 +�t
sX

i=1

�iF (Xt+s�i), (9)

where
Ps

i=1 �i = 1. The formula can be derived from Taylor’s theorem. As an example, we use two
step method (AB2) to illustrate, i.e.,

Xt+1 = X(t) +�t((1� �)Ẋ(t) + �(Ẋ(t)��tẌ(t) +O(�t2)))

= X(t) +�tẊ(t)� ��t2Ẍ(t) +O(�t3). (10)

Then applying Taylor expansion on the true solution, i.e.,

X(t+ 1) = X(t) +�tẊ(t) +
1

2
�t2Ẍ(t) +O(�t3), (11)

The numerical scheme associated to the AB2 and AB3 is the following

Xt+1 = Xt +
3

2
F (Xt,W t, bt)�

1

2
F (Xt�1,W t�1, bt�1), (12)

Xt+1 = Xt +
23

12
F (Xt,W t, bt)�

4

3
F (Xt�1,W t�1, bt�1) +

5

12
F (Xt�2,W t�2, bt�2). (13)

The AB2 method has second order O(�t2) accuracy. Standard ResNet is considered a AB1 method
which has first order O(�t) accuracy. According to the stability analysis of linear multistep explicit
methods, the AB3 method is strongly stable while AB2 and AB1 is conditional stable. This stability
property drives us to apply the AB method to obtain a more robust deep network architectures that
can provide a model with better performance for noisy data. The family of linear multistep method is
large. To shorten the discussion in this work, we focus on the AB2 and AB3 method in our numerical
tests.

4 Numerical Experiment

4.1 Dataset

In this section, we present the numerical results from our new model. The training data can be
collected from experimental measurements or simulated according to a theoretical model. In this
work, we choose to simulate spectral density functions that always have a quasiparticle peak close to
! = 0, as often encountered when considering correlated metals. In the data generation, the spectral
densities A(!) are defined as a sum of uncorrelated Gaussian distributions:

Ai(!) =
1

Ri

RiX

k=0

exp

✓
�
(! � µk)2

2�2
k

◆
, (14)

4

Development of new approaches 
for analytic continuation of 

QMC results to extract real time 
dynamics from imaginary time 

data. 

Focus: Dynamics, excited states, finite temperatures, mechanisms
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Dynamical and thermal magnetic properties of α-RuCl3 

Failure of available spin models for α-RuCl3 
– Derived a spin model for RuCl3 and studied several available models 

from the literature 
– Using exact diagonalization based methods, calculated the specific heat 

and the inelastic neutron scattering response 
– All existing models fail to completely explain the experiments 

Research Details 
– DFT calculation of RuCl3, Wannier transformation to Ru-t2g states 
– Interaction parameters from constrained Random Phase Approximation 
– Spin-only model from perturbation theory

Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3
Satoshi Okamoto,1 Pontus Laurell,2 Tom Berlijn,2,3 Casey Eichstaedt,4 Adolfo G. Eguiluz,4 Yi Zhang5

1Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

3Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
4Department of Physics & Astronomy and Joint Institute of Advanced Materials, The University of Tennessee, Knoxville, Tennessee 37996

5Department of Physics & Astronomy and Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana 70803

Summary
What is the correct low-energy spin Hamiltonian describing α-RuCl3? This material is a
promising Kitaev spin-liquid candidate but is also known to order magnetically at low
temperatures because of the competing interactions. The nature of these interactions,
their magnitudes and even signs, remain an open question. Using numerical
techniques, we investigate the electronic property of α-RuCl3, including dynamic and
thermodynamic properties arising from low-energy spin Hamiltonian.

• A realistic low-energy Hamiltonian is derived from a first principles approach [1]:
transfer integrals, crystal field effects, and the spin-orbit coupling based on the Ru-
t2g Wannier function, and Coulomb interactions (local and non-local) and local
exchange interactions by the constrained random phase approximation (cRPA).
Effective spin interactions are then derived using strong coupling perturbation
theory.

• The non-local Coulomb repulsion is found to be sizable compared to the local one,
leading to a strong enhancement of the magnetic interactions compared with
previously-reported models.

• Considering our first-principles-based spin model as well as previously reported
models, we examine zero-temperature inelastic neutron scattering (INS) intensities
using exact diagonalization and magnetic specific heat using a thermal pure
quantum states method [2].

• Our first-principles model is found to capture the unique feature of magnetic specific
heat, high-temperature peak around 70 K, but overestimate the magnon energy at
the zone center.

• In contrast, other models reproduce important features of the INS data, but do not
adequately describe the magnetic specific heat

• No single current model is found to satisfactorily explain all observed
phenomena of α-RuCl3.

Our results contribute to the understanding and design of quantum spin liquid
materials via first-principles calculations and unbiased computational techniques.
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Background
• Kitaev model on a honeycomb lattice [3]

• α-RuCl3

𝐻Kitaev = 𝐾
𝑖,𝑗

𝑆𝑖
𝛾𝑆𝑗

𝛾

✓ Bond-dependent Ising-type interaction 
✓ Exact ground state: Kitaev (Z2) spin liquid with excitation spectra described by a 

dispersive gapless Majorana fermion mode and two flat gapped Majorana modes
✓ Under an applied magnetic field, a chiral Majorana mode appears (quantization in 

thermal Hall conductance), following (non-) Abelian statistics. ⇒ Potential platform 
for fault-tolerant quantum computing

Ab initio modeling for the low-energy spin Hamiltonian for α-RuCl3
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This study [1] with non-local V -1.3 -15.1 10.1 0.9
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Future research plan
• Refining interaction parameters using machine learning technique

• Investigation using larger size cluster with DMRG method (phase
boundaries, momentum & frequency resolution)

• Spin dynamics at finite temperatures using finite temperature Lanczos
and/or microcanonical Lanczos method [17]

• Thermal Hall effect [18]

• Other Kitaev candidate materials
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✓ Na3Co2SbO6 [19,20]
Zigzag magnetic ordering, similar to α-RuCl3 [21]
Neél AFM ordering is more stable than Zigzag ordering within DFT+U [21]

Work in progress in collaboration with A. M. Samarakoon & D. A. Tennant

Work in progress in collaboration with G. Alvarez
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✓ Non-local Coulomb interactions enhance magnetic interactions.

• DFT parametrization for the single-particle Hamiltonian

• Coulomb interactions by cRPA in units of eV

Ru t2g

• Strong coupling perturbation theory

Dynamical and thermal properties of models for α-RuCl3 (results of 24-site clusters)

• Comparison of model parameters in units of meV

Work in progress for Ab initio modeling and numerical analyses
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and another locates the high temperature peak close to the experiment. 
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Summary
What is the correct low-energy spin Hamiltonian describing α-RuCl3? This material is a
promising Kitaev spin-liquid candidate but is also known to order magnetically at low
temperatures because of the competing interactions. The nature of these interactions,
their magnitudes and even signs, remain an open question. Using numerical
techniques, we investigate the electronic property of α-RuCl3, including dynamic and
thermodynamic properties arising from low-energy spin Hamiltonian.

• A realistic low-energy Hamiltonian is derived from a first principles approach [1]:
transfer integrals, crystal field effects, and the spin-orbit coupling based on the Ru-
t2g Wannier function, and Coulomb interactions (local and non-local) and local
exchange interactions by the constrained random phase approximation (cRPA).
Effective spin interactions are then derived using strong coupling perturbation
theory.

• The non-local Coulomb repulsion is found to be sizable compared to the local one,
leading to a strong enhancement of the magnetic interactions compared with
previously-reported models.

• Considering our first-principles-based spin model as well as previously reported
models, we examine zero-temperature inelastic neutron scattering (INS) intensities
using exact diagonalization and magnetic specific heat using a thermal pure
quantum states method [2].

• Our first-principles model is found to capture the unique feature of magnetic specific
heat, high-temperature peak around 70 K, but overestimate the magnon energy at
the zone center.

• In contrast, other models reproduce important features of the INS data, but do not
adequately describe the magnetic specific heat

• No single current model is found to satisfactorily explain all observed
phenomena of α-RuCl3.

Our results contribute to the understanding and design of quantum spin liquid
materials via first-principles calculations and unbiased computational techniques.
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• Kitaev model on a honeycomb lattice [3]

• α-RuCl3
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✓ Bond-dependent Ising-type interaction 
✓ Exact ground state: Kitaev (Z2) spin liquid with excitation spectra described by a 

dispersive gapless Majorana fermion mode and two flat gapped Majorana modes
✓ Under an applied magnetic field, a chiral Majorana mode appears (quantization in 

thermal Hall conductance), following (non-) Abelian statistics. ⇒ Potential platform 
for fault-tolerant quantum computing

Ab initio modeling for the low-energy spin Hamiltonian for α-RuCl3
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Winter et al. [8] DFT + t/U -1.7 -6.7 6.6 2.7
Winter et al. [9] DFT inspired, INS fit -0.5 -5.0 2.5 0.5
Kim and Kee [10] DFT + t/U -1.53 -6.55 5.25
Yadev et al. [11] Quantum chemistry 1.2 -5.6 1.2 0.25
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• Refining interaction parameters using machine learning technique

• Investigation using larger size cluster with DMRG method (phase
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• DFT parametrization for the single-particle Hamiltonian
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Ru t2g

• Strong coupling perturbation theory

Dynamical and thermal properties of models for α-RuCl3 (results of 24-site clusters)

• Comparison of model parameters in units of meV

Work in progress for Ab initio modeling and numerical analyses
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✓One group of models reproduces INS spectra fairly well but the magnetic specific heat. 
✓Another group [1,8,10], including our ab initio model, captures the high-temperature feature 

of the specific heat well but locates the spin excitations at the Γ point at higher energies. 
✓The discrepancy might be resolved by including finite temperature to compute 𝐼 𝐪, 𝜔 [16]. 
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Summary
What is the correct low-energy spin Hamiltonian describing α-RuCl3? This material is a
promising Kitaev spin-liquid candidate but is also known to order magnetically at low
temperatures because of the competing interactions. The nature of these interactions,
their magnitudes and even signs, remain an open question. Using numerical
techniques, we investigate the electronic property of α-RuCl3, including dynamic and
thermodynamic properties arising from low-energy spin Hamiltonian.

• A realistic low-energy Hamiltonian is derived from a first principles approach [1]:
transfer integrals, crystal field effects, and the spin-orbit coupling based on the Ru-
t2g Wannier function, and Coulomb interactions (local and non-local) and local
exchange interactions by the constrained random phase approximation (cRPA).
Effective spin interactions are then derived using strong coupling perturbation
theory.

• The non-local Coulomb repulsion is found to be sizable compared to the local one,
leading to a strong enhancement of the magnetic interactions compared with
previously-reported models.

• Considering our first-principles-based spin model as well as previously reported
models, we examine zero-temperature inelastic neutron scattering (INS) intensities
using exact diagonalization and magnetic specific heat using a thermal pure
quantum states method [2].

• Our first-principles model is found to capture the unique feature of magnetic specific
heat, high-temperature peak around 70 K, but overestimate the magnon energy at
the zone center.

• In contrast, other models reproduce important features of the INS data, but do not
adequately describe the magnetic specific heat

• No single current model is found to satisfactorily explain all observed
phenomena of α-RuCl3.

Our results contribute to the understanding and design of quantum spin liquid
materials via first-principles calculations and unbiased computational techniques.
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✓ Na3Co2SbO6 [19,20]
Zigzag magnetic ordering, similar to α-RuCl3 [21]
Neél AFM ordering is more stable than Zigzag ordering within DFT+U [21]
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• DFT parametrization for the single-particle Hamiltonian
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• Strong coupling perturbation theory

Dynamical and thermal properties of models for α-RuCl3 (results of 24-site clusters)

• Comparison of model parameters in units of meV
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✓One group of models reproduces INS spectra fairly well but the magnetic specific heat. 
✓Another group [1,8,10], including our ab initio model, captures the high-temperature feature 

of the specific heat well but locates the spin excitations at the Γ point at higher energies. 
✓The discrepancy might be resolved by including finite temperature to compute 𝐼 𝐪, 𝜔 [16]. 
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Summary
What is the correct low-energy spin Hamiltonian describing α-RuCl3? This material is a
promising Kitaev spin-liquid candidate but is also known to order magnetically at low
temperatures because of the competing interactions. The nature of these interactions,
their magnitudes and even signs, remain an open question. Using numerical
techniques, we investigate the electronic property of α-RuCl3, including dynamic and
thermodynamic properties arising from low-energy spin Hamiltonian.

• A realistic low-energy Hamiltonian is derived from a first principles approach [1]:
transfer integrals, crystal field effects, and the spin-orbit coupling based on the Ru-
t2g Wannier function, and Coulomb interactions (local and non-local) and local
exchange interactions by the constrained random phase approximation (cRPA).
Effective spin interactions are then derived using strong coupling perturbation
theory.

• The non-local Coulomb repulsion is found to be sizable compared to the local one,
leading to a strong enhancement of the magnetic interactions compared with
previously-reported models.

• Considering our first-principles-based spin model as well as previously reported
models, we examine zero-temperature inelastic neutron scattering (INS) intensities
using exact diagonalization and magnetic specific heat using a thermal pure
quantum states method [2].

• Our first-principles model is found to capture the unique feature of magnetic specific
heat, high-temperature peak around 70 K, but overestimate the magnon energy at
the zone center.

• In contrast, other models reproduce important features of the INS data, but do not
adequately describe the magnetic specific heat

• No single current model is found to satisfactorily explain all observed
phenomena of α-RuCl3.

Our results contribute to the understanding and design of quantum spin liquid
materials via first-principles calculations and unbiased computational techniques.
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✓All of these models have zigzag spin correlation. 
✓Ref. [9] chose small J1 and Γ1 to describe the low-energy spin excitations well. 

✓One set of models locates the high temperature peak of C(T) at lower temperature, 
and another locates the high temperature peak close to the experiment. 
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✓One group of models reproduces INS spectra fairly well but the magnetic specific heat. 
✓Another group [1,8,10], including our ab initio model, captures the high-temperature feature 

of the specific heat well but locates the spin excitations at the Γ point at higher energies. 
✓The discrepancy might be resolved by including finite temperature to compute 𝐼 𝐪, 𝜔 [16]. 
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Spin model from first principles

For details see 
poster by  
Satoshi Okamoto
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AI to accelerate determinantal lattice quantum Monte Carlo simulations

Neural networks to speed up DQMC 
– Artificial neural networks (ANNs) can predict with near-perfect accuracy 

moves in quantum Monte Carlo (QMC) simulations of many-body 
Hamiltonians and obtain an order of magnitude reduction in the run time.

– Demonstration that machines can learn to perform efficient QMC 
simulations—without an underlying physics model and given only limited 
information about the configuration space—means the method can be 
easily generalized even to other challenging models, such as the 
Fermi-Hubbard model. 

Research Details 
– ANNs were designed to predict the acceptance probabilities of local and 

global moves in determinantal QMC simulations of the Holstein model.
– This development in artificial intelligence (AI) granted access to large 

systems at low-temperatures, overcame long autocorrelation times for the 
model, and facilitated a thermodynamic scaling analysis.Thermodynamic scaling analysis of the charge 

density wave structure factor of the half-filled 
two-dimensional Holstein model in proximity to 
the metal-to-CDW insulator transition Tc

For details see  
poster by  
Steve Johnston Li et al., arXiv:1905.10430



!7

Analytic continuation of noisy data using multistep neural network

New data-driven framework 

!  

– Use novel linear multi-step residual neural network 
(ResNet) to learn the inverse of the kernel 

– Generate training data set as a sum of R uncorrelated 
Gaussians 

– 100k training data set, 1000 samples for validation and 
testing 

Compared to Maximum Entropy 
– 2-step ResNet gives similar results for high-quality data, and 

much better results at high noise levels. 

G(τ) = ∫ K(τ, ω)A(ω)dω ; K(τ, ω) =
e−ωτ

1 + e−βω

ODE in (8). Note that the time step size �t in the fully discretized ODE Xt+1�Xt

�t = F (Xt), is
implicitly absorbed by the residual module in the original formulation of ResNet (4). Instead, we
intend to use a multistep Adams-Bashforth (AB) method to discretize (8). As mentioned before, the
standard ResNet can be considered as the forward Euler discretization, whereas multistep AB method
has higher accuracy in numerical methods of ODE [2]. The fully discretized schemd is shown in
Fig. 1 and

Figure 1: Two step neural network

Xt+s = Xt+s�1 +�t
sX

i=1

�iF (Xt+s�i), (9)

where
Ps

i=1 �i = 1. The formula can be derived from Taylor’s theorem. As an example, we use two
step method (AB2) to illustrate, i.e.,

Xt+1 = X(t) +�t((1� �)Ẋ(t) + �(Ẋ(t)��tẌ(t) +O(�t2)))

= X(t) +�tẊ(t)� ��t2Ẍ(t) +O(�t3). (10)

Then applying Taylor expansion on the true solution, i.e.,

X(t+ 1) = X(t) +�tẊ(t) +
1

2
�t2Ẍ(t) +O(�t3), (11)

The numerical scheme associated to the AB2 and AB3 is the following

Xt+1 = Xt +
3

2
F (Xt,W t, bt)�

1

2
F (Xt�1,W t�1, bt�1), (12)

Xt+1 = Xt +
23

12
F (Xt,W t, bt)�

4

3
F (Xt�1,W t�1, bt�1) +

5

12
F (Xt�2,W t�2, bt�2). (13)

The AB2 method has second order O(�t2) accuracy. Standard ResNet is considered a AB1 method
which has first order O(�t) accuracy. According to the stability analysis of linear multistep explicit
methods, the AB3 method is strongly stable while AB2 and AB1 is conditional stable. This stability
property drives us to apply the AB method to obtain a more robust deep network architectures that
can provide a model with better performance for noisy data. The family of linear multistep method is
large. To shorten the discussion in this work, we focus on the AB2 and AB3 method in our numerical
tests.

4 Numerical Experiment

4.1 Dataset

In this section, we present the numerical results from our new model. The training data can be
collected from experimental measurements or simulated according to a theoretical model. In this
work, we choose to simulate spectral density functions that always have a quasiparticle peak close to
! = 0, as often encountered when considering correlated metals. In the data generation, the spectral
densities A(!) are defined as a sum of uncorrelated Gaussian distributions:

Ai(!) =
1

Ri

RiX

k=0

exp

✓
�
(! � µk)2

2�2
k

◆
, (14)
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Fig. 4 provides a qualitative comparison of the results of our AB-ResNet method and the MaxEnt
method where we plot three samples from test set for illustration purposes. In these examples, both
methods predict A(!) accurately for the lowest level of noise. However, at noise ✏ = 10�2, MaxEnt
is not able to recover the peaks in the predicted spectral function. While in the case of AB-ResNet,
our model is able to correctly identify most peaks. Hence, it clearly shows that our AB-ResNet
model generates better results compared to the classical MaxEnt. Fig. 5 shows the comparison of the
prediction between each AB network model from three different samples. The average mean absolute
error on the test dataset are 6.8e� 4, 3.8e� 4, 2.6e� 4 for AB1, AB2 and AB3, respectively. This
is consistent with the numerical ODE. That is, higher step method provides higher accuracy results.
Then, we studied the computational efficiency of our model compared to MaxEnt. AB-ResNet model
allows a direct mapping between Green’s function and the spectral densities. In contrast, the MaxEnt
method is an iterative method which requires generating trail functions until convergence is reached.
For the computation cost, the CPU time for AB-ResNet model is O(10) second while for MaxEnt
is O(103) second. So, the new model is more computationally efficient than compared to MaxEnt
method.

Figure 4: The predicted spectral density function A(!) from AB3-ResNet and Maxent (dark line).
The top row are the results from dataset with noise level 10�2, the bottom row results obtained from
the dataset under noise level 10�3

Figure 5: The comparison of predicted spectral function between 2S-ResNet (red) and standard
Neural Net (dark)

5 Conclusions

In summary, we have developed the Adams-Bashforth ResNet that solves the kernel inversion with
noisy data for the analytic continuation problem. The numerical experiments show that our AB-
ResNet model can recover the spectral function with an accuracy similar to that of the commonly
used maximum entropy approach under low levels of noise. The new model gives much better results
than MaxEnt under high levels of noise at a fraction of its computational cost. Adding more training
data and using larger step network architecture could further improve the model performance. Other
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Xie et al., arXiv:1905.10430

For details see  
poster by  
Xuping Xie
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Accelerating DCA++ on Summit

DCA++ code 
– Two kernels: (1) Coarse-graining of momentum space to map lattice problem 

onto effective cluster problem, (2) quantum Monte Carlo cluster (QMC) solver  
– Two-level parallelization (MPI internode + std::threads intranode) 

Several optimizations 
– Extensive profiling (in collaboration with RAPIDS institute) 
– Coarse-graining: Improved multi-threading and intra-process scheduling 
– QMC solver: (1) Improved asynchronous CPU-GPU communication 

                      (2) GPU support for measurement accumulation of  
                           observables  
                      (3) Improved (direct) walker - accumulator communication  
                      (4) Dynamic intra-node workload distribution  
                      (5) Overlapping computation and communication  
                      (6) Mixed precision – Double precision (walker),  
                           single precision (two-particle vertex accumulation) 

Speedup & Performance on Summit 
– ~ 100 x speedup 
– ~ 75 PFlops

give rise to exotic states and fascinating properties such
as multiferroicity 2 and high-temperature superconductivity.
These properties open the door for technological advances
in applications such as data storage and MRI machines.
However, current methodologies based on density functional
theory (DFT), the workhorses for electronic structure cal-
culations, break down when attempting to describe strongly
correlated systems.

The complexity of the general electronic structure problem
and the failure of DFT has led to the development of reduced
models that are believed to capture the relevant physics under-
lying the observed properties. The most prominent example is
the use of the two-dimensional (2D) Hubbard model for the
study of high-temperature superconducting copper-oxide based
materials (cuprates) [2], [3], for instance. The Hubbard model
describes interacting electrons on a lattice, which can hop
between lattice sites and interact through an on-site Coulomb
repulsion. Formally, the Hamiltonian is given by

H = H0 +Hint = �t
X

hi,ji,�

c†i�cj� + U
X

i

ni"ni# . (1)

The first term of eq. (1), where hi, ji indicates that the
sum runs over nearest-neighbor sites i and j, represents the
electron hopping with amplitude t. The second term, where the
sum runs over all lattice sites i, captures the on-site Coulomb
interaction of strength U . The index � 2 {", #} represents the
electron spin. Systems with multiple electron bands per lattice
site are also supported.

Mathematically, the Hamiltonian is represented by a matrix.
Solving for the possible energy levels and states of the system
is equivalent to solving for the eigenvalues and eigenstates of
the Hamiltonian. However, exact diagonalization studies of the
2D Hubbard model are restricted to very small lattices as the
problem size scales exponentially with the number of lattice
sites. Quantum Monte Carlo (QMC) simulations, in turn, are
plagued by the infamous fermion sign problem, which again
limits the accessible lattice sizes and prevents calculations at
low temperatures [4]. To study Hubbard model type of prob-
lems, dynamical mean field theory (DMFT) [5] has become
one method of choice. In DMFT the complexity of the infinite
lattice problem is reduced by mapping it to a self-consistent
solution of an effective impurity model, thereby treating only
spatially local correlations exactly and including non-local
correlations on a mean-field level. In order to treat additional
non-local correlations that are important to understand the
mechanism of high-temperature superconductivity, for exam-
ple, DMFT has been extended by quantum cluster approaches
such as the dynamical cluster approximation (DCA) [1], [6],
[7].

DCA is a numerical simulation tool to predict physical
behaviors (such as superconductivity, magnetism, etc.) of

2Multiferroics are materials exhibiting more than one ferroic property such
as ferromagnetism and /or ferroelectricity.
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Lattice Mapping

each thread

;
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Cluster Mapping

QMCSolver
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"Accumulator"
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Thread [1..T]
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"Thread[1..M]"

MPI [1..N]

MPI [1..N]

Fig. 1. General workflow of the DCA++ application, showing two primary
kernels and input/output to each of the kernels. On distributed multi-core
machines we exploit the underlying hardware with a two level (MPI +
threading) parallelization scheme.

correlated quantum materials [8]. The DCA++ code3 computes

3DCA++ code has been created in a collaboration between Oak Ridge
National Laboratory (ORNL) and Thomas Schulthess’s group at ETH Zürich.
ORNL’s DCA++ code won the Gordon Bell Award in 2008 for the first
petascale computation of high-temperature superconductors [9].
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Fig. 5. Strong scaling plot (log-log) of a production run on OLCF’s Summit,
80 million measurements (see Section III-A for the detailed system informa-
tion). Red line shows a linear scaling of the QMC kernel. Blue line shows the
scaling of the entire DCA++ runtime including MPI communications for data
movement across nodes and I/O from and to the GPFS file system on Summit.
The black dot shows the time spent (6.79 hrs) by the old code on all 4600
nodes. We observe a performance improvement of up to 113⇥ comparing the
new code with the old code.

on the overhead (⇠ 7 minutes) exceeded the computational
time of the QMC kernel (⇠ 3 minutes). Despite the overhead,
time-to-solution is still better than the one reported in [8].
MPI optimizations to alleviate the overhead problem include
increasing the message sizes by packing multiple data-sets
together, and the use of asynchronous communications are
some of the ongoing efforts.

2) Weak scaling performance: Next, we performed a weak
scaling analysis by increasing the number of measurements
with the number of compute nodes, while keeping the runtime
fixed at 13 minutes. In statistics, the standard error of the
mean is inversely proportional to the square root of the
number of measurements (i.e., ⇠ 1/

p
nmeasurements). It is thus

a reasonable FOM to verify the performance of the weak
scaling for Monte Carlo simulations, which quantifies the
improvements in the quality and precision of the simulations
as a function of computing resources.

The error bars on G and Gtp are computed using the
jackknife technique, with the measurements from one MPI
rank grouped together as a bin. Figure 6 reports the measured
relative errors, which is the l2 norm of the error normalized by
the norm of the signal. As observed from the figure, the error
scales inversely proportional to the square root of the number
of measurements, which signifies a perfect weak scaling.

Another observation from Figure 6 is that given the number
of measurements, the statistical error for G is much larger than
the single precision accuracy. This hints at the possibility of
making use of mixed precision to improve the performance:
MC walks (Section III-C1) and the single particle measure-
ments (Section III-C2(c)) in double precision for the accuracy,
while the two-particles measurements (Section III-C2(d)) are
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Fig. 6. Weak scaling plot (log-log) using the same system as in Figure 5.
For this plot, we fix the QMC runtime at 10 minutes and observe the number
of measurements obtained. The higher the measurements, the higher is the
accuracy, which leads to a lower error. Lower is better. This plot shows the
error for G.

in single precision. Performance gained were measured as
FLOP/s count improvement in the following sub-subsection.

3) FLOP/s count: As it was not possible to directly
measure the GPU FLOP/s count over multiple MPI ranks, we
estimated the performance by counting the FLOP/s for each
large matrix multiplication on a GPU in the walker routine,
and those performed by the Gtp accumulation algorithm. This
provides a tight lower bound to the FLOP/s count on 1/6 of a
Summit node. Consider the performance of the MC step to be
the peak performance, we got an estimate of 64.1 PFLOP/s for
the new code, while the old code run only at 0.577 PFLOP/s
as it is limited by the long runtime spent on the two-particle
accumulation. With the mixed precision implementation, the
new code achieved a peak performance of 73.6 PFLOP/s on
Summit. The higher FLOP/s count is due to the use of single
precision in the two-particles measurements, which is about
two times faster than double precision operations. As the
relative error on Gtp is significantly larger than 10�7 on our
largest run, higher precision is not needed here.

4) Titan vs Summit: For a comparison, we also run both
versions of the code on OLCF’s Titan using a single node
and extrapolating the estimates to the full machine. While the
code does not require any modification to transition from Titan
to Summit, the lower on-node memory on Titan, both in the
CPU RAM and the GPU device memory, limits the number of
threads that can be run on a node: 5 walkers and 1 accumulator
with the new code, and 1 walker and 5 accumulators with the
old code. This severely impacts the performance of the codes.
We estimated a peak performance of 6.19 PFLOP/s on the
entire Titan with the new code, and 0.103 PFLOP/s with the
old code.
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correlated quantum materials [8]. The DCA++ code3 computes
the many-body (single-particle and two-particle) Green’s func-
tions for a Hubbard-type material of interest. Properties of the
materials, such as the superconducting transition temperature,
can be calculated from these many-body Green’s functions.

DCA++ has an iterative, self consistent algorithm with two
primary kernels (see Figure 1): (a) Coarse-graining of the
single-particle Green’s function to reduce the complexity of
the infinite size lattice problem to that of an effective finite
size cluster problem, and, (b) Quantum Monte Carlo based
solution of the effective cluster problem.

Almost all of DCA’s computing time is spent in the QMC
solver. Figure 2 shows the general workflow of the Quantum
Monte Carlo solver.

N1

N3

N4

Walker 1

Accu. 3

Accu. 1

Walker 2

Accu. 2

N2 N2

N1

N3

N4

GN2’

GN2’’

GN2’’’

[G]

[G]

[G]

[G]

GN2

GN1

GN3

GN4

MPI 
Communication

Threading MPI 
Communication

Fig. 2. The computation structure of the Quantum Monte Carlo kernel.
This figure shows the levels of parallelism in the QMC solver (the MPI
communication, thread level parallelism and accelerator level ). Each rank (N1
- N4) is assigned a Markov Chain and the initial Green’s function. Each rank
spawns worker threads (walkers and accumulators). Computation performed
by the walker threads are done on the GPU, upon completion the walkers
send measurements over to the accumulator threads, running on the CPU
(asynchronous computation) to generate partial [G]’s (GN2’, GN2”, GN2”’ ).
The partial [G]’s are then reduced per node followed by a MPI_AllReduce
operation that computes the final [G] for the next iteration.

A. Coarse-graining
The DCA algorithm replaces the infinite lattice problem

by a finite-size impurity cluster that is embedded in a self-
consistent mean-field. Formally, we substitute the lattice self-
energy ⌃(~k, i!n) with a piecewise constant continuation of
the cluster self-energy ⌃c( ~K, i!n),

⌃DCA(~k, i!n) =
X

~K

� ~K(~k)⌃c( ~K, i!n) , (2)

where the patch function � ~K(~k) is one, if ~k lies inside the
~K th patch, and zero otherwise. The single-particle Green’s
function G(~k, i!n), which describes single-particle dynamics
of the Hamiltonian, is then coarse-grained over the patches,

Ḡ( ~K, i!n) =
Nc
VBZ

R
d~k � ~K(~k)

h
G�1

0 (~k, i!n)� ⌃DCA(~k, i!n)
i�1

,

(3)
3DCA++ code has been created in a collaboration between Oak Ridge

National Laboratory (ORNL) and Thomas Schulthess’s group at ETH Zürich.
ORNL’s DCA++ code won the Gordon Bell Award in 2008 for the first
petascale computation of high-temperature superconductors [9].

where Nc denotes the cluster size, VBZ is the volume of the
Brillouin zone, and

G0(~k, i!n) =
1

i!n �H0(~k) + µ
(4)

is the Green’s function corresponding to the non-interacting
part of the Hamiltonian, the first term in Equation (1). The
chemical potential µ is a parameter that needs to be adjusted
by iterating the coarse-graining step until the desired density,
given by the value of G at zero time and displacement in real
space, is obtained.

This makes the problem tractable by reducing the degrees
of freedom to those of the cluster, while still retaining in-
formation about the remaining lattice degrees of freedom
in an averaged fashion. The coarse-grained Green’s function
Ḡ( ~K, i!n) and the cluster self-energy ⌃c( ~K, i!n) define the
bare Green’s function of an effective cluster problem through
the Dyson equation,

G0( ~K, i!n) =
h
Ḡ�1( ~K, i!n) + ⌃DCA(~k, i!n)

i�1
. (5)

By solving this effective cluster problem we obtain a new
cluster self-energy ⌃c(K, i!n), which closes the DCA self-
consistency loop.

B. Quantum Monte Carlo (QMC) solver
We employ a continuous time auxiliary-field (CT-AUX)

QMC algorithm [10], [11]. Our implementation of the CT-
AUX solver incorporates submatrix updates [11] and accu-
mulation of measurements with non-equidistant fast Fourier
transforms [12]. In the CT-AUX methodology, the partition
function Z is expressed as an expansion in terms of the
N -matrices that are related to the Green’s function through
G = NG0,

Z =
X

k�0

T k
X

{(⌧i,si)}k

Y

�=",#

���N�
{⌧i,si}k

���
�1

, (6)

and in which the quartic interaction term in the Hamiltonian
has been replaced through a Rombout’s decoupling by a
coupling to an Ising auxiliary spin field si [10]. Here, k is
the expansion order, T is a time ordering operator, and the
inner sum runs over the k auxiliary spin fields si.

During the simulation, the expansion order k has a peaked
distribution around a mean value that scales as O(Nc U/T ),
where Nc is the cluster size and T is the temperature. The
memory requirement for the random walk scales as O(k2),
while the computational cost scales as O(k3).

The quantity that needs to be measured from the random
walk (by the walkers), and used in the following iterations of
the DCA loop, is the single particle Green’s function

G = G0 � G0 M G0, (7)

where M is a k⇥k matrix produced by the MC walker, closely
related to the inverse of N from eq. (6). The single particle
Green’s function describes the propagation of a single electron
bearing a momentum ~k and a frequency !n.

3

Chatterjee et al., submitted to PACT ‘19
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Accelerating DMRG++ for dynamics and finite temperatures

Targeting multiple states in DMRG 
– Multiple states are needed in density matrix matrix for finite 

temperature calculations and dynamics 
– Replacing the density matrix by a singular value decomposition 

(SVD) increases performance significantly and enables multiple 
targeting  

Optimized GPU support for Summit 
– Use of multiple GPUs for larger problems (more states) 
– Use of atomic updates in MAGMA library to take advantage of 

symmetry of Hamiltonian to reduce HBM storage on GPU 
– Calculation of spectral functions is embarrassingly parallel and thus 

can take full advantage of parallelization on Summit, significantly 
increasing frequency resolution

Run-time in seconds on a Volta GPU on x86 Linux 
workstation. Note all SVD performed on CPU.

6
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FIG. 4: Walltimes in seconds for each frequency run ! using
conventional DMRG (dashed line) and using SVD (solid line).

32⇥ 2 ladder. We have kept at most m = 2000 states for
the DMRG, such that nb  42m2 is the dimension of the
truncated Hilbert space; the factor 4 arises because the
one-site Hilbert space of the Hubbard model is composed
of 4 states.
We have analyzed the performance of the model just

described in the realistic case of running the computer
program in high performance computer systems, and in-
cluding the use of the GPU for the matrix-vector product
algorithm. Figure 4 shows the total walltimes in seconds
for a simulation using the traditional DMRG approach
of building the reduced density matrix, and using the
SVD approach instead, for each frequency of interest. For
all frequencies, the SVD approach decreases total run-
time by a factor of approximately 1.25; larger frequencies
take longer to converge in this Krylov-space algorithm as
detailed in ref. [20].
Table I compares the same run when done on GPU

and when done on CPU; only the matrix-vector-product
algorithm was run on GPU when indicated. The SVD
algorithm is already at 5% of run time and it might not be
beneficial to run it on the GPU due to memory overhead.
The results shown in the table should not be taken to infer
that the GPU is linearly faster than the CPU, because
only the most computationally expensive sub-algorithm
was done on the GPU: the matrix-vector product. Other
sub-algorithms, the SVD of the vectors, the summation
of sparse matrices, and the wave-function-transformation
[21] were done on the CPU. Data movement between the
CPU and the GPU is another well-known limiting factor
that must be taken into account.

V. CONCLUSION

Whether the MPS formulation or the conventional for-
mulation of the DMRG is used, multiple states must be
targeted for observations beyond ground state. The sin-

GPU CPU

! fullRunSVD fullRunDM fullRunSVD fullRunDM

GS 191 231 193 241
�2 1073 1406 1690 1969
0 1043 1380 1710 1947
2 1048 1402 1757 2014

TABLE I: Wall times in seconds of typical runs depending
on the use of the SVD algorithm or the density matrix (DM)
algorithm, for runs done using the GPU or the CPU for the
matrix-vector product algorithm. Note that the SVD or the
density matrix diagonalization was always done on CPU.

gular value decomposition helps both formulations. In
the MPS formulation, targeting multiple states replaces
the addition of MPSs and their subsequent compression
[5] at the expense of the maximum bond dimension m. In
the conventional formulation the SVD replaces the more
expensive density matrix sub-algorithm, substantially re-
ducing the time to solution.

Future work will apply the computational insights and
theory explained in this paper to the simulation of mod-
els on more than two leg ladders, of interest as a proxy
to the fully two-dimensional lattice. The real frequency
spectral functions in these models, of interest due to the
existence of angle-resolved photo-emission spectroscopy
and neutron scattering data, has mostly been inacces-
sible theoretically and is only now been computed on
large enough lattices and with enough precision to help
explain the transitions and interactions that cause the
experimentally measured spectra.
All the theory and computation presented for real fre-

quency applies straightforwardly to finite temperature T

by replacing the initial state with the infinite temperature
state obtained from the ground state of entangler Hamil-
tonians [11, 22] and the Lehman formulation in Eq. (5)
by thermal evolution at “imaginary time” � = 1/T . Like-
wise, real time evolution (when using Krylov-space de-
composition) will show maximal computational cost in
the matrix-vector product [23]. The computer programs
used (including DMRG++ [24]) are described in the
supplemental [13], where details to enable reproduction
of the results presented here can also be found.
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DMRG: S(Q,ω) for telephone ladder cuprates

Parameters:  
2-leg Hubbard ladder; 64 x 2;  
intermediate to strong coupling 

!qz = 0 !qz = π
!⟨n⟩ = 1

!⟨n⟩ = 0.9375
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Hole ordering and dimerized state in Sr14Cu24O41

Masaaki Matsuda, Tetsuya Mutou, and Koichi Katsumata
Magnetic Materials Laboratory, RIKEN

Magnetic properties of the low dimensional magnet Sr14Cu24O41 were investigated by means of electron spin resonance
and neutron scattering techniques. The CuO2 chains in this compound show a dimerized state with an intradimer
coupling of 11meV. Neutron scattering experiments revealed a quasi-two-dimensional hole ordering, resulting in
an ordering of magnetic Cu2+ with spin-1/2 and nonmagnetic Cu. A possibility of an insulator to metal transition in
this compound is pointed out.

Lower dimensional antiferromagnets have attracted many
researchers since they exhibit novel phenomena originating
from quantum fluctuations. Quantum effects are most promi-
nent in one-dimensional (1D) systems. The most striking
effect in a 1D Heisenberg antiferromagnet (HAF) is that in-
teger and half-odd-integer spins show qualitatively different
properties, as first suggested by Haldane.1) In high-Tc su-
perconducting copper oxides, which are realizations of the
spin (S) 1/2 two-dimensional (2D) HAF with carrier doping,
many studies support the importance of 2D magnetic fluctu-
ations to an understanding of these mechanism.2) Based on
the t − J model, superconductivity is also expected in the
carrier doped S = 1/2 Heisenberg ladder3) which is a system
intermediate between one and two dimensions.

Fig. 1. The crystal structure of Sr14Cu24O41.

Sr14Cu24O41 consists of two kinds of unique building blocks4)

as shown in Fig. 1. One is simple chains of copper ions which
are coupled by the nearly 90◦ Cu-O-Cu bonds. The other
is two-leg ladders of copper ions, which are coupled by the
nearly 180◦ Cu-O-Cu bonds along the a and c axes. Each
building block and Sr ions form layered structure in the ac
plane and stack alternately along the b axis. An important
feature of this compound is that stoichiometric Sr14Cu24O41

contains hole carriers. It has been reported that most of the
holes are localized in the chain and that the hole spins lo-
calized at oxygen sites couple with copper spins to form the
Zhang-Rice (ZR) singlet.5) In this article we concentrate on
the magnetic properties of the chains.

In order to study the magnetic properties of the chain, we first
performed electron spin resonance (ESR) measurements.6)

We have observed a sharp ESR signal in a single crystal
of Sr14Cu24O41. The integrated intensity of the absorption
spectra along the a, b and c axes are plotted in Fig. 2. The
intensity (A) is peaked around 80 K. This shows clearly that
the ESR signal comes from a transition within excited states
and not from the ground state. The line width of the ab-
sorption spectrum is almost temperature independent below
about 150K and begins to increase when the temperature is
increased further.

We analyze the results of the ESR measurements with the
following simple model: the ground state is a singlet and
there is an energy gap (∆) between the singlet and the first
excited state. In an S = 1/2 1D HAF elementary excitations
are spin-wave like and are not localized. Also, a spin-wave ex-
citation with a large gap energy is not expected in Cu2+ com-
pounds. Then we take a triplet for the first excited state. In
this case the ESR intensity (A) depends on temperature(T )
as,

A ∝ 2Z−1 exp(−∆/kBT ) sinh(gµBH/kBT ),

Z ≡ 1 + exp(−∆/kBT ){1 + 2 cosh(gµBH/kBT )}, (1)

where kB and H represent Boltzmann’s constant and applied
magnetic field, respectively. The solid lines in Fig. 2 are fits
to Eq. (1) with ∆/kB = 120K. The model reproduce the
experimental data fairly well. From these results, we were
convinced that the ground state in the chain is a dimerized
state and non-magnetic.

In order to study the dimerized state in more detail, we per-
formed neutron scattering studies.7,8) From the experiments,

15

Sr14Cu24O41

From Matsuda et al., Riken Review ‘99
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DQMC study of bond phonons in Ba1-xKxBiO3

Ba1-xKxBiO3 

– Negative charge transfer regime 
– Holes self-dope from cation to ligand oxygen atoms 
– Hybridization between cation and oxygen atom leads  

to sizable electron-phonon coupling 
– Charge-ordered insulator for x=0 
– Superconductor (Tc ~ 30 K) at finite x 

3-orbital Su-Schrieffer-Heger (SSH) model 

!  

!  

!  
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FIG. 1: (a) A sketch of bond disproportionated lattice struc-
ture. The red and blue dots indicate the s and px,y orbitals,
respectively, while the black arrow indicate the displacement
pattern of each oxygen atom in the bond disproportionated
structure. Panels (b) and (c) plot the lattice displacement
correlation functions hX̂r,xX̂0,xi and hX̂r,yX̂0,yi as a func-
tion of distance r = nxa + nyb, respectively. Here, a and
b are the primitive vectors along x- and y-directions, respec-
tively. Panel (d) plots the real-space displacement correlation
function hX̂r,yX̂0,xi indicating the two-sublattice structure of
the bond disproportionated state. The distance between two
nearest Bi atom in the undistorted square structure is a.

whose orbital basis consists of a Bi 6s orbital and two
O 2p orbitals, as shown in Fig. 1(a). We freeze the
heavier Bi atoms into place and restrict lighter O atoms
to move along the bond directions. The Hamiltonian is
H = H0 +Hlat +He�ph, where

H0 = �tsp
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Here, h. . . i denotes a sum over nearest neighbor atoms,
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0 = ±x, ±y index the oxygen atoms surrounding each

Bi, and the operators s†r,�
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�
and p
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⇣
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create

(annihilate) spin � holes on the Bi 6s and O 2p� orbitals,
respectively. The unit cells are indexed by r = nxa+nyb,
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FIG. 2: (a) The temperature dependence of the spectral
weight at the Fermi level �G(r = 0, ⌧ = �/2) and the direct
current (dc) conductivity �dc. (b) The temperature depen-
dence of the charge-density-wave susceptibility �C(⇡,⇡). In
both panels, the average filling is hni = 1 corresponding to
the “half-filled” case with one hole per unit cell.

where a = (a, 0), b = (0, a) are the primitive lattice vec-
tors along x- and y-directions, respectively, and a is the
Bi-Bi bond length (and our unit of length). To simplify
the notation, we have introduced shorthand notation
pr,�x,� = pr�a,x,� and pr,�y,� = pr�b,y,�. The operators
n̂
s
r,� = s

†
r,�sr,� and n̂

p↵
r,� = p

†
r,↵,�pr,↵,� are the number

operators for s and p↵ (↵ = x, y) orbitals, respectively;
✏s and ✏p are the site energies; µ is the chemical poten-
tial; tsp and tpp are the Bi-O and O-O hopping integrals
in the undistorted crystal; and ↵ is the e-ph coupling
constant. The phase factors are Px(y) = �P�x(�y) = 1,
and P±x,±y = P±y,±x = �P±x,⌥y = �P⌥y,±x = 1. The
motion of the O atoms described by the atomic displace-
ment (momentum) operators X̂r,↵ (P̂r,↵). Here, M is
the oxygen mass and K is the coe�cient of elasticity
between each Bi and O atom, and each O is linked by
springs to the neighboring Bi atoms. Thus, bare phonon
frequency is ⌦ =

p
2K/M . Finally, the atomic displace-

ments modulate the hopping integral as tsp(P� � ↵ûr,�),

where we have introduced the shorthand ûr,x = X̂r,x,

ûr,�x = X̂r�a,x, ûr,y = X̂r,y, and ûr,�y = X̂r�b,y.
We study the model on a square lattice with N = 4⇥4

Bi atoms (48 orbitals in total) using DQMC. We stress
that the model considered here is free of the Fermion
sign problem. The details are provided in the supple-
mentary materials [47], along with expressions for the
standard quantities measured in this work, and supple-

2D Lieb lattice

Phonon frequency !  

e-ph coupling strength !

Ω = 2tsp

α = 4a−1

Sign-problem free DQMC algorithm! 
First non-perturbative treatment in > 1D!

From Plumb et al., PRL ‘16
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Bond disproportionated, charge ordered state at half-filling
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FIG. 1: (a) A sketch of bond disproportionated lattice struc-
ture. The red and blue dots indicate the s and px,y orbitals,
respectively, while the black arrow indicate the displacement
pattern of each oxygen atom in the bond disproportionated
structure. Panels (b) and (c) plot the lattice displacement
correlation functions hX̂r,xX̂0,xi and hX̂r,yX̂0,yi as a func-
tion of distance r = nxa + nyb, respectively. Here, a and
b are the primitive vectors along x- and y-directions, respec-
tively. Panel (d) plots the real-space displacement correlation
function hX̂r,yX̂0,xi indicating the two-sublattice structure of
the bond disproportionated state. The distance between two
nearest Bi atom in the undistorted square structure is a.

whose orbital basis consists of a Bi 6s orbital and two
O 2p orbitals, as shown in Fig. 1(a). We freeze the
heavier Bi atoms into place and restrict lighter O atoms
to move along the bond directions. The Hamiltonian is
H = H0 +Hlat +He�ph, where
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FIG. 2: (a) The temperature dependence of the spectral
weight at the Fermi level �G(r = 0, ⌧ = �/2) and the direct
current (dc) conductivity �dc. (b) The temperature depen-
dence of the charge-density-wave susceptibility �C(⇡,⇡). In
both panels, the average filling is hni = 1 corresponding to
the “half-filled” case with one hole per unit cell.

where a = (a, 0), b = (0, a) are the primitive lattice vec-
tors along x- and y-directions, respectively, and a is the
Bi-Bi bond length (and our unit of length). To simplify
the notation, we have introduced shorthand notation
pr,�x,� = pr�a,x,� and pr,�y,� = pr�b,y,�. The operators
n̂
s
r,� = s

†
r,�sr,� and n̂
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r,� = p

†
r,↵,�pr,↵,� are the number

operators for s and p↵ (↵ = x, y) orbitals, respectively;
✏s and ✏p are the site energies; µ is the chemical poten-
tial; tsp and tpp are the Bi-O and O-O hopping integrals
in the undistorted crystal; and ↵ is the e-ph coupling
constant. The phase factors are Px(y) = �P�x(�y) = 1,
and P±x,±y = P±y,±x = �P±x,⌥y = �P⌥y,±x = 1. The
motion of the O atoms described by the atomic displace-
ment (momentum) operators X̂r,↵ (P̂r,↵). Here, M is
the oxygen mass and K is the coe�cient of elasticity
between each Bi and O atom, and each O is linked by
springs to the neighboring Bi atoms. Thus, bare phonon
frequency is ⌦ =

p
2K/M . Finally, the atomic displace-

ments modulate the hopping integral as tsp(P� � ↵ûr,�),

where we have introduced the shorthand ûr,x = X̂r,x,

ûr,�x = X̂r�a,x, ûr,y = X̂r,y, and ûr,�y = X̂r�b,y.
We study the model on a square lattice with N = 4⇥4

Bi atoms (48 orbitals in total) using DQMC. We stress
that the model considered here is free of the Fermion
sign problem. The details are provided in the supple-
mentary materials [47], along with expressions for the
standard quantities measured in this work, and supple-
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FIG. 1: (a) A sketch of bond disproportionated lattice struc-
ture. The red and blue dots indicate the s and px,y orbitals,
respectively, while the black arrow indicate the displacement
pattern of each oxygen atom in the bond disproportionated
structure. Panels (b) and (c) plot the lattice displacement
correlation functions hX̂r,xX̂0,xi and hX̂r,yX̂0,yi as a func-
tion of distance r = nxa + nyb, respectively. Here, a and
b are the primitive vectors along x- and y-directions, respec-
tively. Panel (d) plots the real-space displacement correlation
function hX̂r,yX̂0,xi indicating the two-sublattice structure of
the bond disproportionated state. The distance between two
nearest Bi atom in the undistorted square structure is a.

whose orbital basis consists of a Bi 6s orbital and two
O 2p orbitals, as shown in Fig. 1(a). We freeze the
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FIG. 2: (a) The temperature dependence of the spectral
weight at the Fermi level �G(r = 0, ⌧ = �/2) and the direct
current (dc) conductivity �dc. (b) The temperature depen-
dence of the charge-density-wave susceptibility �C(⇡,⇡). In
both panels, the average filling is hni = 1 corresponding to
the “half-filled” case with one hole per unit cell.

where a = (a, 0), b = (0, a) are the primitive lattice vec-
tors along x- and y-directions, respectively, and a is the
Bi-Bi bond length (and our unit of length). To simplify
the notation, we have introduced shorthand notation
pr,�x,� = pr�a,x,� and pr,�y,� = pr�b,y,�. The operators
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operators for s and p↵ (↵ = x, y) orbitals, respectively;
✏s and ✏p are the site energies; µ is the chemical poten-
tial; tsp and tpp are the Bi-O and O-O hopping integrals
in the undistorted crystal; and ↵ is the e-ph coupling
constant. The phase factors are Px(y) = �P�x(�y) = 1,
and P±x,±y = P±y,±x = �P±x,⌥y = �P⌥y,±x = 1. The
motion of the O atoms described by the atomic displace-
ment (momentum) operators X̂r,↵ (P̂r,↵). Here, M is
the oxygen mass and K is the coe�cient of elasticity
between each Bi and O atom, and each O is linked by
springs to the neighboring Bi atoms. Thus, bare phonon
frequency is ⌦ =

p
2K/M . Finally, the atomic displace-

ments modulate the hopping integral as tsp(P� � ↵ûr,�),

where we have introduced the shorthand ûr,x = X̂r,x,

ûr,�x = X̂r�a,x, ûr,y = X̂r,y, and ûr,�y = X̂r�b,y.
We study the model on a square lattice with N = 4⇥4

Bi atoms (48 orbitals in total) using DQMC. We stress
that the model considered here is free of the Fermion
sign problem. The details are provided in the supple-
mentary materials [47], along with expressions for the
standard quantities measured in this work, and supple-
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FIG. 1: (a) A sketch of bond disproportionated lattice struc-
ture. The red and blue dots indicate the s and px,y orbitals,
respectively, while the black arrow indicate the displacement
pattern of each oxygen atom in the bond disproportionated
structure. Panels (b) and (c) plot the lattice displacement
correlation functions hX̂r,xX̂0,xi and hX̂r,yX̂0,yi as a func-
tion of distance r = nxa + nyb, respectively. Here, a and
b are the primitive vectors along x- and y-directions, respec-
tively. Panel (d) plots the real-space displacement correlation
function hX̂r,yX̂0,xi indicating the two-sublattice structure of
the bond disproportionated state. The distance between two
nearest Bi atom in the undistorted square structure is a.

whose orbital basis consists of a Bi 6s orbital and two
O 2p orbitals, as shown in Fig. 1(a). We freeze the
heavier Bi atoms into place and restrict lighter O atoms
to move along the bond directions. The Hamiltonian is
H = H0 +Hlat +He�ph, where

H0 = �tsp

X

hr,�i,�

⇣
P� s

†
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⌘

+ tpp

X

hr,�,�0i,�
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†
r,�,�pr,�0,�

+
X

r,�

h
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r,� + (✏p � µ)(n̂px
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py
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i
,
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X

r
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2
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2
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!

He�ph = ↵tsp

X

hr,�i,�

⇣
ûr,�s

†
r,�pr,�,� + h.c.

⌘
.

Here, h. . . i denotes a sum over nearest neighbor atoms,
�, �

0 = ±x, ±y index the oxygen atoms surrounding each

Bi, and the operators s†r,�
�
sr,�

�
and p

†
r,�,�

⇣
pr,�,�

⌘
create

(annihilate) spin � holes on the Bi 6s and O 2p� orbitals,
respectively. The unit cells are indexed by r = nxa+nyb,
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FIG. 2: (a) The temperature dependence of the spectral
weight at the Fermi level �G(r = 0, ⌧ = �/2) and the direct
current (dc) conductivity �dc. (b) The temperature depen-
dence of the charge-density-wave susceptibility �C(⇡,⇡). In
both panels, the average filling is hni = 1 corresponding to
the “half-filled” case with one hole per unit cell.

where a = (a, 0), b = (0, a) are the primitive lattice vec-
tors along x- and y-directions, respectively, and a is the
Bi-Bi bond length (and our unit of length). To simplify
the notation, we have introduced shorthand notation
pr,�x,� = pr�a,x,� and pr,�y,� = pr�b,y,�. The operators
n̂
s
r,� = s

†
r,�sr,� and n̂

p↵
r,� = p

†
r,↵,�pr,↵,� are the number

operators for s and p↵ (↵ = x, y) orbitals, respectively;
✏s and ✏p are the site energies; µ is the chemical poten-
tial; tsp and tpp are the Bi-O and O-O hopping integrals
in the undistorted crystal; and ↵ is the e-ph coupling
constant. The phase factors are Px(y) = �P�x(�y) = 1,
and P±x,±y = P±y,±x = �P±x,⌥y = �P⌥y,±x = 1. The
motion of the O atoms described by the atomic displace-
ment (momentum) operators X̂r,↵ (P̂r,↵). Here, M is
the oxygen mass and K is the coe�cient of elasticity
between each Bi and O atom, and each O is linked by
springs to the neighboring Bi atoms. Thus, bare phonon
frequency is ⌦ =

p
2K/M . Finally, the atomic displace-

ments modulate the hopping integral as tsp(P� � ↵ûr,�),

where we have introduced the shorthand ûr,x = X̂r,x,

ûr,�x = X̂r�a,x, ûr,y = X̂r,y, and ûr,�y = X̂r�b,y.
We study the model on a square lattice with N = 4⇥4

Bi atoms (48 orbitals in total) using DQMC. We stress
that the model considered here is free of the Fermion
sign problem. The details are provided in the supple-
mentary materials [47], along with expressions for the
standard quantities measured in this work, and supple-

dc conductivity and spectral weight at EF

CDW susceptibility

Li et al., arXiv:1901.07612



!14

Polaronic liquid and superconductivity at finite doping

CDW
SC

polaron liquid

1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000
Phase diagram

3

(c) !" = 1 (d) !" = 1.38

(e) !" = 1.44 (f) !" = 1.59

-2

-1

0

1

2

-2

-1

0

1

2

-2 -1 0 1 2 -2 -1 0 1 2

Staggered polaron correlation

-2 -1 0 1 2 -2 -1 0 1 2

-2

-1

0

1

2

-2

-1

0

1

2

(g) !" = 1 (h) !" = 1.44

(i) !" = 1.59 (j) !" = 1.77

Staggered bipolaron correlation×10./

(a)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

σ
d
c

 0

 0.2

 1  1.2  1.4  1.6  1.8

(b
i)

p
o
la

ro
n
 n

u
m

b
er

<n̂>

polaron
bipolaron

     
 

 

 

 

 

0.02

0

0.07

0

0.02

-0.01

0.05

0.08

0.06

-0.01

0.06

0.09

0.41

0.09

0.06

-0.01

0.06

0.08

0.05

-0.01

0.02

0

0.07

0

0.02

+-0.07

+-0.04

+-0.06

+-0.04

+-0.07

+-0.04

+-0.04

+-0.03

+-0.04

+-0.04

+-0.04

+-0.02

+-0.06

+-0.02

+-0.04

+-0.04

+-0.04

+-0.03

+-0.04

+-0.04

+-0.07

+-0.04

+-0.06

+-0.04

+-0.07

     
 

 

 

 

 

0.28

0.12

0.31

0.12

0.28

0.12

0.29

0.14

0.29

0.12

0.29

0.14

0.52

0.14

0.29

0.12

0.29

0.14

0.29

0.12

0.28

0.12

0.31

0.12

0.28

+-0.1

+-0.04

+-0.1

+-0.04

+-0.1

+-0.04

+-0.08

+-0.03

+-0.08

+-0.04

+-0.09

+-0.03

+-0.09

+-0.03

+-0.09

+-0.04

+-0.08

+-0.03

+-0.08

+-0.04

+-0.1

+-0.04

+-0.1

+-0.04

+-0.1

     
 

 

 

 

 

-0.02

-0.02

0.04

-0.02

-0.02

-0.03

0.04

0.09

0.03

-0.03

0.04

0.08

0.41

0.08

0.04

-0.03

0.03

0.09

0.04

-0.03

-0.02

-0.02

0.04

-0.02

-0.02

+-0.07

+-0.04

+-0.06

+-0.04

+-0.07

+-0.04

+-0.03

+-0.02

+-0.04

+-0.04

+-0.05

+-0.02

+-0.07

+-0.02

+-0.05

+-0.04

+-0.04

+-0.02

+-0.03

+-0.04

+-0.07

+-0.04

+-0.06

+-0.04

+-0.07

     
 

 

 

 

 

-0.03

-0.02

0.01

-0.02

-0.03

-0.03

0

0.08

0

-0.03

0.02

0.08

0.4

0.08

0.02

-0.03

0

0.08

0

-0.03

-0.03

-0.02

0.01

-0.02

-0.03

+-0.06

+-0.04

+-0.05

+-0.04

+-0.06

+-0.04

+-0.02

+-0.03

+-0.02

+-0.04

+-0.05

+-0.02

+-0.06

+-0.02

+-0.05

+-0.04

+-0.02

+-0.03

+-0.02

+-0.04

+-0.06

+-0.04

+-0.05

+-0.04

+-0.06

-0.03

-0.02

0.01

-0.02

-0.03

-0.03

0

0.08

0

-0.03

0.02

0.08

0.4

0.08

0.02

-0.03

0

0.08

0

-0.03

-0.03

-0.02

0.01

-0.02

-0.03

+-0.06

+-0.04

+-0.05

+-0.04

+-0.06

+-0.04

+-0.02

+-0.03

+-0.02

+-0.04

+-0.05

+-0.02

+-0.06

+-0.02

+-0.05

+-0.04

+-0.02

+-0.03

+-0.02

+-0.04

+-0.06

+-0.04

+-0.05

+-0.04

+-0.06

     
 

 

 

 

 

0.1

0

0.11

0

0.1

0

0.1

0

0.1

0

0.1

0

1.42

0

0.1

0

0.1

0

0.1

0

0.1

0

0.11

0

0.1

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.24

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

+-0

+-0.03

     
 

 

 

 

 

0.01

-0.02

0.02

-0.02

0.01

-0.02

0.02

0

0.02

-0.02

0.02

0

1

0

0.02

-0.02

0.02

0

0.02

-0.02

0.01

-0.02

0.02

-0.02

0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0

+-0.01

+-0.01

+-0.02

+-0

+-0.17

+-0

+-0.02

+-0.01

+-0.01

+-0

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

     
 

 

 

 

 

0

-0.01

0.01

-0.01

0

-0.01

0.01

0.01

0.01

-0.01

0.01

0.01

0.96

0.01

0.01

-0.01

0.01

0.01

0.01

-0.01

0

-0.01

0.01

-0.01

0

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0

+-0.01

+-0

+-0.01

+-0.01

+-0

+-0.16

+-0

+-0.01

+-0.01

+-0

+-0.01

+-0

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

     
 

 

 

 

 

-0.01

0

0.01

0

-0.01

-0.01

0

0.01

0

-0.01

0

0.01

0.96

0.01

0

-0.01

0

0.01

0

-0.01

-0.01

0

0.01

0

-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.19

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

+-0.01

FIG. 3: (a) The dc conductivity as a function of doping. (b) polaron and bipolaron number as a function of doping. (c)-(f)
Staggered polaron correlation function hP (r)i and (h)-(j) staggered bipolaron correlation function hBP (r)i at di↵erent doping
levels. The red (gray) color indicates values larger (smaller) than zero. The numerical value of the correlation function, along
with the associated 1� statistical error are indicated at each point. All results are for a temperature 1/(�tsp) = 0.1 and error
bars smaller than the marker size have been suppressed for clarity.

mentary exact diagonalization calculations. The details
of all non-standard quantities are provided in the main
text. Throughout, we adopt tsp = 2.08, tpp = 0.056,
✏s = 6.42, and ✏p = 2.42 (in units of eV), which are ob-
tained from DFT calculations of BaBiO3 [35]. We adopt
a phonon energy ⌦ =

p
2tsp and e-ph coupling strength

↵ = 4a�1, which gives average displacement’s squared
of 1

N

P
rhX̂

2
r,xi =

1
N

P
rhX̂

2
r,yi = 0.0356a2 at half-filling,

indicating that the oxygen atoms do not cross the bis-
muth atoms during the sampling. (Here, we are limited
to large ⌦ by long autocorrelation times.)

Results — Figures 1(b)-1(d) plots the lattice displace-
ment correlation functions hX̂r,xX̂0,xi, hX̂r,yX̂0,yi, and

hX̂r,yX̂0,xi, as a function of position at inverse temper-
ature � = 10/tsp, which provides evidence for a bond
disproportionated insulating state at hn̂i = 1. Both
hX̂r,xX̂0,xi and hX̂r,yX̂0,yi alternate in sign following a

checkerboard pattern while hX̂r,yX̂0,xi alternates in sign
along x- and y-directions but is constant along the di-
agonal. This behavior reflects the breathing distortion
sketched in Fig. 1(a), and is consistent with the bond
disproportionation observed in the insulating phase of
the BKBO [48–50].

Figure 2(a) plots the dc conductivity �dc and orbital-
resolved spectral weight �G��(r = 0, ⌧ = �/2), where �

is the orbital index, for hn̂i = 1 [47, 51]. The conductiv-
ity (black dots) initially increases as the temperature is
lowered until reaching a maximum at � ⇡ 5/tsp then it
is suppressed. All three orbital spectral weights follow a
similar trend, indicating a concomitant removal of spec-
tral weight at the Fermi level. The insulating phase is
characterized by a q = (⇡,⇡) charge order, as evidenced

by the charge susceptibility �
C
��(q) plotted in Fig. 2(b)

as a function of temperature. Below 1/�tps = 0.2, the
charge correlations rapidly increase on the s orbital, while
there is little change on the p orbitals. This observation
implies that the charge density on the O sublattice is
uniform, even in the bond disproportionated structure,
while a charge modulation forms on the Bi sites in the
insulating state. An examination of the real-space charge
density, as shown in the inset of Fig. 2(b), confirms this.
We stress, however, that the charge transfer between the
Bi sites is on the order of 0.1 holes/Bi.

From this analysis, it is clear that the model has
a bond-disproportionated structure and a small charge
modulation on the Bi atoms in the insulating state. This
result supports the bond disproportionation scenario pro-
posed for the bismuthates [41]. We now examine how
this state evolves upon hole doping. Here, our focus is
on the possible formation of lattice polarons, where holes
are bound to local breathing distortions of the oxygen
sublattice. These objects can be studied by considering
the polaron number operator p̂(r) = x̂r,Ls(n̂r,s + n̂r,Ls),
where n̂r,Ls =

P
� L

†
r,s,�Lr,s,� is the number operator

for the A1g combination of the ligand oxygen orbitals
Lr,s,� = 1

2 (pr,x,� + pr,y,� � pr,�x,� � pr,�y,�) [47] and

x̂r,Ls = (X̂r,x + X̂r,y � X̂r,�x � X̂r,�y). This opera-
tor measures the combined presense of holes in the A1g

molecular orbital surrounding a Bi site and a local con-
traction of those same orbitals, and can be used to trace
the evolution of polarons with doping.

With increasing hole concentrations, we observe a MIT
at � = 10/tsp. Figure 3(a) plots �dc as a function of fill-
ing, where it increases upon hole doping until saturating

Staggered polaron 
correlations

4

at hn̂i ⇡ 1.4, indicating metallic behavior. At the same
time, the number of polarons 1

N

P
rhp̂(r)i decreases as

additional holes are introduced but remains nonzero even
at the largest dopings [Fig.3(b)], indicating that the free
carriers have polaronic character. We also study polaron
correlations in real space using the staggered polaron cor-
relation function hP (r)i = (�1)nx+ny hp̂(r)p̂(0)i, which is
plotted in Figs.3(c)-(f) for selected hole concentrations.
At half filling, hP (r)i is positive for all r, indicating that
the polarons are frozen into a long-range two-sublattice
order, consistent with the patterns inferred from Figs. 1
and 2. With increasing hole concentrations, hP (r)i de-
creases at the larger distances, signalling an overall relax-
ation of the bond disproportionated on long length scales
but the persistence of short-range correlations. Such be-
havior could reflect nanoscale phase separation [52]; how-
ever, studies on large clusters are likely needed to clarify
this issue. Finally, in the high doping region, where the
system is metallic (e.g. hn̂i > 1.44), the correlations be-
come very short-ranged and extend up to at most one or
two lattice constants.

We also examined the doping evolution of the
bipolaron number, defined as 1

N

P
rhĝ(r)i, where

ĝ(r) = x̂r,Ls(n̂r,s," + n̂r,Ls,")(n̂r,s,# + n̂r,Ls,#), and the
staggered bipolaron correlation function hBP (r)i =
(�1)rx+ry hĝ(r)ĝ(0)i, as a function of doping. When com-
puting the latter quantity, we considered the signal on
the Bi site by keeping only the terms proportional to
n̂r,s,"n̂r,s,#. This simplification is necessary due to the
enormous number of terms generated by the Wick con-
traction of the product of ĝ(r) operators. The fact that
we see excess charge density on the Bi sites at the center
of a breathing distortion provides some justification for
this simplification.

Figure 3(b) plots the doping evolution of the bipo-
laron number operator. As with the polaron number,
it is largest near half-filling and decreases slowly with
doping. At large hole concentrations, however, it is still
finite, suggesting that a significant amount of bipolarons
are present in the system. The staggered bipolaron cor-
relation function is plotted in Figs. 3(g)-(j). At hn̂i = 1,
the bipolaron correlations are clear and long-ranged on
the scale of the cluster. This result supports the inter-
pretation that the insulating phase is a static bipolaron
lattice. As the hole concentration increases, we find that
the bipolaron correlations are suppressed at all length
scales, while a finite number of bipolarons are present, as
indicated in Fig. 3(b). These results can again be easily
understood if the metallic phase is a polaron liquid.

Given the presence of lattice polarons in the metal-
lic phase, we computed the s-wave orbital-resolved pair
field susceptibility �

sc
� [47]. Figure 4(a) plots �

sc
� as a

function of temperature at hn̂i = 1.59, and compares it
against the dominant charge correlations �

C
ss(⇡,⇡/2) at

this doping. All three susceptibilities increase with de-
creasing temperature, but �

sc
px

= �
sc
py

⌘ �
sc
p dominates
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FIG. 4: (a) The charge �C(⇡,⇡/2) and pair-field �SC suscep-
tibilities as a function of temperature 1/(�tsp) at hni = 1.59.
The inset plots 1/�p

sc as a function of temperature 1/(�tsp).
The black dashed line is the fitting result. (b) The doping
dependence of �p

sc at a temperature of 1/(�tsp) = 0.03. Error
bars smaller than the marker size have been suppressed for
clarity.

below 1/�tsp ⇡ 0.04. This observation implies pairing
appears predominantly in the oxygen atoms. Extrapo-
lating 1/�sc

p to zero (inset), yields an estimate for the su-
perconducting �c ⇡ 63.29/tsp). This value is artificially
high, due to the large value of ⌦ used in our calculations.
Nevertheless, our results provide evidence that the bipo-
laronic rich metallic phase has a superconducting ground
state. Fig. 4(b) plots �

sc
p as a function of doping at

1/�tsp = 0.03, where we find that pairing susceptibility
is suppressed in proximity to the insulating phase, sug-
gesting the presence of a superconducting dome induced
by competition with the insulating phase.

Summary — We have introduced a quantum Monte
Carlo approach for studying bond phonons with SSH-
type e-ph couplings in higher dimensions. While our
approach has broad applications to many materials, we
have used it to study a 2D three-orbital SSH model in
the negative charge transfer regime for the first time.
We obtained several results consistent with the observed
properties of bismuthate high-Tc superconductors. At
half filling, we find a bond disproportionated state that
can be viewed as a lattice of localized bipolarons. Upon
hole-doping, this state gives way to a polaron-liquid-like
state with short-range correlations, consistent with pro-
posals for nano-scale phase separation or strongly fluctu-
ating lattice polarons in doped BKBO [52–57]. We also
find s-wave superconducting tendencies, which primarily

0

1

2

0 0.1
T/tps

 1/
χp SC

S-wave pairfield 
susceptibility

‣ Bipolaronic state at half-filling that melts into a 
polaron-liquid-like metallic state with a 
superconducting ground state upon doping.

Li et al., arXiv:1901.07612
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Two pairing domes as Cu2+ varies to Cu3+

Highly (hole) overdoped curates 
– Sr2CuO4-𝛿 (Tc ~ 95 K; isostructural to 214 La2CuO4) 

– Cu0.75Mo0.25Sr2YCu2O7.54 (Tc ~ 84 K)  

– Ba2CuO4−𝛿 (Tc ~ 70 K) 

– Monolayer CuO2 films (Tc ~ 100 K) 
– High pressure oxidized synthesis 
– Reduced Cu - apical O spacing 

– !  orbital important, in addition to !  orbital 

Two-orbital tight-binding Hubbard-Hund model 

!  

!

d3z2−r2 dx2−y2

H0(x) = ∑
kσ

∑
ℓℓ′ �

(ξℓℓ′�(k) + (εℓ(x) − μ) δℓℓ′�) d†
ℓσ(k)dℓ′ �σ(k)

H1 = U∑
i,ℓ

niℓ↑niℓ↓ + U′� ∑
i,ℓ′�<ℓ

niℓniℓ′� + J ∑
i,ℓ′�<ℓσ,σ′�

∑ d†
iℓσd†

iℓ′ �σ′�diℓσ′ �diℓ′ �σ + J′� ∑
i,ℓ′�≠ℓ

d†
iℓd†

iℓ↓diℓ′�↓diℓ′ �↑

Sr2CuO4 there is still one electron per formula unit missing from the
pd-bands. According to Harrison’s early tight-binding bands for CuO2

planes [8], this electron comes from the highest, e.g., band, as in stoi-
chiometric La2CuO4, providing a hole Fermi surface centered at the
Brillouin Zone corner and no Fermi surface in the other bands. There
were no unusual features in the band structure, which is not surpris-
ing considering that no strong local electron correlations were
included.

2. Unresolved issues

The location of the oxygen vacancies within the unit cell has yet
to be firmly established. We offer reasons for believing that they
are in the CuO2 layers. This heretical idea is at odds with the uni-
versally accepted assumption that fully-stoichiometric CuO2 layers
are essential for obtaining the high Tcs. However, no theoretical or
experimental work other than that discussed below has investi-
gated the overdoped range well beyond p = 0.35 where non super-
conducting Fermi liquid behavior has been found.

Three important questions we address in this comment are: (1)
What is the identity of the superconducting phase? (2) Where are
the oxygen vacancies located? (3) Why is Tc so much enhanced
over that of all other ‘‘optimally” doped 214 cuprates?

Because presently available samples are all multiphase, it is not
possible to answer these questions with certainty. However, on the
basis of an analysis of all the existing data, we tentatively conclude
that: (1) the same majority phase which is present for all the var-
ious synthetic protocols is (contrary to what has been previously
asserted) the superconducting phase; (2) the structural evidence
that the O vacancies are primarily in the Cu–O layer in the majority
phase thus implies that high-temperature superconductivity arises
in planes with a very different structure than in more familiar

materials. The authors of Refs. [1,2], and the original discoverers
of the material, Hiroi et al. [3], assumed that the oxygen vacancies
were located in the rock salt blocks, that is in the (SrO)2 double lay-
ers. This assumption, although unquestionably reasonable, is not
based upon any direct experimental evidence, in fact we find that
the evidence suggests otherwise. Concerning question 3, we spec-
ulate briefly on various roles the in-plane O vacancies may be play-
ing in the mechanism of superconducting pairing.

3. Identifying the superconducting phase in multiphase
samples

Minority phases have, indeed, been found for all methods of
synthesis including that employed by Hiroi et al. [3], Liu et al. [1]
and by Han et al. [4]. The minority-phase-explanation gained cre-
dence a few years later from experiments by Scott et al. [9]. Those
authors used a high-pressure synthesis method, claimed to be sim-
ilar to that described in Refs. [3,4]. However, they used KClO3 for
oxidizing the starting Sr2CuO3 material while Hiroi et al. [3] and
Han et al. [4] had used a much stronger oxidizing agent, KClO4.
With a scanning SQUID microscope, Scott et al. [9] identified a
minority (!3%) superconducting oxychloride cuprate phase in
their macroscopically inhomogeneous sample that was supercon-
ducting and could account for the small zero-field-cooled super-
conducting signals that were observed. They further suggested
that the same minority phase could have been responsible for
the superconductivity observed in the previous work by Hiroi
et al. [3], Han et al. [4], and others. Although a direct comparison
is not possible, the magnitude of the Scott et al. [9] signals are at
least a factor of 5 smaller than the ones reported by Han et al.
[4] in Fig. 2, and the lattice constants obtained from powder X-
ray diffraction are markedly different. Nevertheless, after their sug-
gestion there was a cessation of further research until Liu et al. [1]
employed SrO2 as the oxidizing agent in their high pressure syn-
thesis. This elegant procedure eliminated the possibility of oxy-
chloride contamination. Furthermore, since fine-grained mixtures
of the constituents were employed, the incomplete diffusion
encountered by Scott et al. [9] was avoided and the authors were
able to estimate the oxygen content of their samples from the ini-
tial composition.

In Fig. 2 we compare the superconducting behavior of the Liu
et al. [1] samples with that of Han et al. [3] samples. It should be
noted that the samples being compared here were made more than
a decade apart in time in different laboratories using different oxi-
dizing agents. If the superconductivity properties were due to an
unidentified minority phase as alleged by Liu et al. [1] because of
Scott’s suggestion, it is surprising that remarkably similar signals
were found in the two investigations. In both cases, the Sr2CuO4"v

phases were synthesized under high pressures !6 GPa and
T # 1100 !C (Liu) and 900 !C (Han) and retained as metastable
phases at room temperature and atmospheric pressure. It is not

Fig. 2. Comparison of Han et al. and Liu et al. field-cooled Meissner data redrawn from original paper to be on same scale. The 450 !C anneal of Han data shown in green
retained the majority phase and was not super-conducting. The 350 !C anneal of the Liu data (shown in insert with different scale) also retained the majority phase and was
not superconducting. a = 3.795 and c = 12.507 (Liu et al. [27]).

Fig. 1. Schematic representation of phase diagram of single layer cuprates that have
been heavily doped. a = 3.756 and c = 12.521 [4].
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FIG. 1. The two-orbital tight-binding band structure for Cu2+x

dopings of x = 0.15 and 0.85. For the underdoped case (a), a single
band with dominant dx2−y2 orbital character crosses the Fermi energy.
In the extremely overdoped system (b) with a reduced Cu apical O
spacing, two bands with dx2−y2 and d3z2−r2 orbital weights cross the
Fermi energy. The orbital weights for dx2−y2 and d3z2−r2 are indicated
by orange and blue, respectively.

interaction parameters which would be expected to decrease
as the doping increases. Here we have chosen to keep them
constant in order to compare the effects of the change in the
orbital occupation and Fermi surface structure on the size of
the pairing strength λα . A similar two-orbital (dx2−y2 , d3z2−r2 )
Hamiltonian has been used by Jiang et al. [14] to model a
CuO2 monolayer on Bi2212 [6]. Treating this model using a
Gutzwiller approximation, they derived a spin-orbit superex-
change pairing interaction of the Kugel-Kohmskii form and
find nodeless A1g s± pairing.

In the multiorbital RPA theory the pairing vertex
#ℓ1ℓ2ℓ3ℓ4 (k, k′) for scattering a singlet pair (k ↑ ℓ1,−k ↓ ℓ4)
in orbitals ℓ1 and ℓ4 to (k′ ↑ ℓ2,−k′ ↓ ℓ3) in orbitals ℓ2 and
ℓ3 illustrated in Fig. 2 is given by

#ℓ1ℓ2ℓ3ℓ4 (k, k′) =
[ 3

2 U sχRPA
S (k − k′)U s

− 1
2 U cχRPA

O (k − k′)U c

+ 1
2 (U s + U c)

]
ℓ1ℓ2ℓ3ℓ4

. (3)

FIG. 2. The vertex for scattering a (k ↑ ℓ1, −k ↓ ℓ4) pair to a
(k′ ↑ ℓ2, −k′ ↓ ℓ3) pair with ℓ = 1 for the dx2−y2 orbit and ℓ = 2 for
the d3z2−r2 orbit.

Here U s and U c represent 4 × 4 matrices in orbital space
which depend on the interaction parameters and χRPA

S and
χRPA

O are orbital matrix RPA spin and orbital (charge) suscep-
tibilities given in the Supplemental Material [9].

III. RESULTS AND DISCUSSION

The dominant orbital scattering vertices for a doping of x =
0.15 are shown in Fig. 3. Here k is fixed at the bottom of
the hole Fermi surface (the point labeled 60) that surrounds
the M point and k′ varies over the Fermi surface points 0–
79 as indicated in Fig. 3(a). The dominant contribution to the
pairing is associated with the orbital vertex #1111 in which the
electrons are in the dx2−y2 orbital. The strength of this vertex
peaks at momentum transfers k′ − k equal to Q1 and Q2 shown
in Fig. 3(a).

As we have seen, for the compressed heavily overdoped
material, both the dx2−y2 and the d3z2−r2 orbitals are present
near the Fermi surfaces with considerable weight associated
with the d3z2−r2 orbital. In this case, as shown in Fig. 4 for
a doping x = 0.85, the dominant contribution to the pairing
is associated with the orbital vertices #2222, #1122, #2211, and
#1111. The #2222 vertex involves scattering between pairs with
d3z2−r2 orbital weight while the latter #1111 vertex involves
pairs with dx2−y2 orbital weight. As seen in Fig. 4(a), for

FIG. 3. (a) The Fermi surface for x = 0.15 and (b) selected orbital-dependent vertices versus k′ with k fixed at 60. The dominant orbital
weight on the Fermi surface for x = 0.15 is dx2−y2 and the peaks in #1111 seen in (b) arise from the k′

1 − k1 scattering processes labeled Q1 and
Q2 in (a).
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Random Phase Approximation (Weak Coupling) Prediction

Two pairing domes 
– First dome at small doping x describes 

superconductivity in usual, lightly doped cuprates 
– Second dome at much larger doping describes 

recently observed superconductivity in highly 
overdoped cuprates 

– Second dome has much larger pairing strength 
– For large doping, mixing of different d-orbitals allows 

for strong nesting between electron and hole Fermi 
surfaces 

– Possibility of Bardassis-Schrieffer mode in Raman 
scattering due to near degeneracy of d- and s± pairing 
channels

TWO PAIRING DOMES AS CU2+ VARIES TO … PHYSICAL REVIEW B 99, 224515 (2019)

FIG. 4. (a) The Fermi surface for x = 0.85 and (b) selected orbital-dependent vertices versus k′ with k fixed at 140. In this case, there is
significant d3z2 − r2 orbital weight on the Fermi surface. The structure in the vertices arises from the scattering processes indicated in (a).

the shortened Cu apical O distance and x = 0.85 doping, the
d3z2− r2 orbital weight is larger than the dx2− y2 orbital weight
over most parts of the Fermi surfaces. The !1122 and !2211
vertices involve both the d3z2− r2 and dx2− y2 orbitals and have
an intermediate strength. The momentum dependence of the
vertices reflect the k′ − k momentum transfers Q1, Q2, and Q3
indicated in Fig. 4(a).

In terms of the scattering vertices, the pairing strength is
given by the eigenvalue of

−
∑

j

∮ dk′
∥

2πvFj (k
′
∥)

!i j (k, k′)gα
j (k

′) = λαgα
i (k) (4)

with

!i j (k, k′) =
∑

ℓ1ℓ2ℓ3ℓ4

aℓ1
νi

(k)aℓ4
νi

(− k)!ℓ1ℓ2ℓ3ℓ4 (k, k′)

× aℓ2∗
ν j

(k′)aℓ3∗
ν j

(− k′). (5)

FIG. 5. (a) The pairing strength eigenvalue λα (x) versus doping
for s± and dx2 − y2 pairing shows two domes: one in the underdoped
and another in the highly overdoped regime. (b) The gap function
for the leading dx2 − y2 eigenvalue for x = 0.15. (c) The dx2 − y2 gap
function for x = 0.80 and (d) the s± gap function for x = 0.85.

Here j sums over the Fermi surfaces, vFj (k
′
∥) is the Fermi

velocity |∇kEν j (k)|, and the integral runs over the Fermi sur-
face or surfaces. We have calculated the leading B1g (d-wave)
and A1g (s± -wave) pairing strength eigenvalues as a function
of the doping x. The results plotted in Fig. 5(a) show that
for the traditional “low-doping” region (x ∼ 0.15) the pairing
strength is in the B1g (d-wave) channel as expected. However,
in the strongly overdoped (x ∼ 0.85) regime both the B1g
(d-wave) and A1g (s± -wave) pairing strengths are significant
and quite close to each other.

As seen in Fig. 4, the dominant pair scattering process with
momentum transfer Q2 contributes to the pairing strength in
both the d-wave and the s± channels. Similarly the scattering
Q1 contributes to both, while the scattering at Q3 contributes
negatively. These same momentum transfers are effective in
scattering electron pairs between the corners of the electron
and of the hole Fermi surfaces. These processes lead to the
“accidental” nodes of the s± gap function.

IV. CONCLUSIONS

To conclude, for the two-orbital (dx2− y2 , d3z2− r2 ) RPA
model we have studied we find two Tc domes: one in the
underdoped and one in the highly overdoped regime. As
expected, in the low doping region there is B1g (d-wave)
pairing. In the extremely overdoped x ≈ 0.85 region we
find pairing strength in both the B1g (d-wave) and A1g (s± -
wave) channels. The pairing strength in this second region
is larger relative to that found in the small doping region
and that for an optimally doped single-band Hubbard model.
This is in spite of the two orbitals dx2− y2 and d3z2− r2 each
having significant orbital weight at the Fermi energy. This
appears counter to previous calculations which concluded
that Tc is optimized when the orbital weight is concentrated
in a single dx2− y2 orbital [15,16]. However, similar spin-
fluctuation-based pairing calculations [17] have found that
Tc is enhanced in systems which have both electron- and
hole-Fermi surfaces. This enhancement has also been seen
in dynamic cluster approximation (DCA) calculations for
a two-layer Hubbard model with electron and hole bands
[18]. We believe that having both electron- and hole-Fermi
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Dynamic Cluster Quantum Monte Carlo results: #⟨n⟩ = 2.85 (x = 0.15)

Fermi surface ( #  )|∇n(k) | Leading eigenvalue of Bethe-Salpeter equation)

Parameters: 4 x 4 cluster; !  ; Doping x=0.15 U = 4, U′� = 2, J = J′ � = 0
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Dynamic Cluster Quantum Monte Carlo results: #⟨n⟩ = 2.0 (x = 1)

Fermi surface ( #  )|∇n(k) | Leading eigenvalue of Bethe-Salpeter equation)

Parameters: 4 x 4 cluster; !  ; Doping x=1 U = 4, U′� = 2, J = J′ � = 0
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Pairing in 2-orbital model for cuprates

‣ Pairing is stronger in heavily 
overdoped region with hole and 
electron Fermi surface pockets 

‣ d-wave and s± - pairing almost 
degenerate in heavily 
overdoped region
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