
#

In partnership with:

Project web site:
https://collab.cels.anl.gov/display/Fission GasSciDAC2

Simulation of fission gas in uranium oxide nuclear fuel

Presented at SciDAC PI Meeting, 18 July 2019

This work was supported by the U.S. Department of
Energy, Office of Advanced Scientific Computing
Research, and the Office of Nuclear Energy.

David Andersson* on behalf of
Institution Principal Investigator Additional personnel
ANL Barry Smith (FastMath) Shashi Aithal
INL Giovanni Pastore Cody Permann, Derek Gaston, Fande

Kong, Daniel Schwen
LANL David Andersson# Blas Uberuaga, Danny Perez, Ben Liu
ORNL David Bernholdt (RAPIDS) Phil Roth
SNL Habib Najm (FastMath) Tiernan Casey
U. Florida Michael Tonks Dung-Uk Kim, Ali Muntaha
U. Tennessee Brian Wirth Abdullah Al-Fadhili, Sophie Blondel

*andersson@lanl.gov

#

The long-standing fission gas problem

Diffusion
Resolution

Trapping

Diffusion

Generation of fission gases (Xe, Kr)

Fission reactions

Grain-boundary gas

Grain-boundary
bubble swelling

Intra-granular
bubble swelling

Intra-granular gas
(bubbles)

Intra-granular gas
(single atoms)

Saturation / Micro-cracking

Fission
gas release

* G. Pastore (INL) – micrographs from White, Corcoran and Barnes, Report R&T/NG/EXT/REP/02060/02 (2006).

The fission gas release process

§ Fission gas located:
– Mobile single gas atoms
– Intra-granular bubbles
– Inter-granular bubbles

§ Gas release driven by inter-granular
bubble interconnection:

§ Concentration of mobile and trapped
intragranular gas:

Intra-granular

Inter-granular

Release to
plenum

		
∂c
∂t

= D∇2c − gc + ′b m+ !β

Diffusion

Absorption Re-solution

Creation

D' = Db' b' + g()§ Effective diffusion rate for
accumulation at boundaries:

T. Matthews and D.
Andersson (LANL)

∂m
∂t

= gc− b'm

Mobile gas: Trapped gas:

Our vision of multiscale modeling and objectives

Ab#initio
electronic,structure
VASP

Length,scale

Ti
m
es
ca
le

Molecular,statics
LAMMPS/GULP

Molecular,
dynamics
LAMMPS

Accelerated
molecular,
dynamics
(ParRep and,
ParSplice)
LAMMPS

Spatially,resolved,
reaction#diffusion,
kinetic,rate,theory
Xolotl.fission

Phase,field,method
MARMOT

Reduced,
parameter,
continuum,
models, of,
fission, gas,
release
BISON

Atomistic;methods Continuum;methods

ps
#n
s

µs
#m

s
ns
#µ
s

m
s#
s

da
ys
#y
ea
rs

atomic#nm nm#µm µm#mm mm#m

UQ,analysis,based,on,
global, sensitivity,analysis,
and,Bayesian,inference,
methods,UQTk/DAKOTA;

1

1
1

2 5

6
4

7

84

3

3

Utilize Cluster Dynamics spatially coupled to Phase Field Modeling informed by
atomic scale simulations and uncertainty quantification to more accurately predict
fission gas bubble populations & thereby and fission gas release.

Leverage
accomplishments and
tools developed by
the DOE programs
(NEAMS and
SciDAC), extend to
leadership-class
computing and “multi-
scale” UQ.

Although useful in steady-state simulations for known conditions, the current
rate-theory model is not successful for transients, higher burnups, etc.,
because of the simplified geometric and physical representation.

Research activities organized in 3 thrusts

§ Thrust 1 (David Andersson): DFT and long-time scale atomistic
simulations to understand fission gas and defect behavior.
– Density Functional Theory (David Andersson)
– Interatomic Potentials, AMD and MD Simulations Utilizing HPC

(Danny Perez)
§ Thrust 2 (Brian Wirth): Spatially discretized cluster dynamics and

MARMOT PFM simulations to understand fission gas bubble
behavior.
– Xolotl-Fission Development and Coupling to MARMOT (Brian Wirth)
– MARMOT Simulations of Inter-Granular Bubble Evolution (Mike

Tonks)
– Reduced order Model in BISON (Giovanni Pastore)

§ Thrust 3 (Habib Najm): Uncertainty quantification and
experimental validation.
– UQ Methods (Habib Najm)
– Experimental Validation (Giovanni Pastore)C

om
pu

tin
g,

 C
om

pu
te

r S
ci

en
ce

 a
nd

 A
pp

lie
d

M
at

h
(D

av
id

 B
er

nh
ol

dt
)

Point defect and Xe diffusion from DFT and FECD

§ DFT calculations to develop and parametrize a cluster dynamics model (FECD)
for point defects and defect clustering in UO2 to describe U and Xe diffusion
under intrinsic and irradiation conditions1,2,3.

§ Predicts effective diffusion rates in UO2,
which is provided as input to MARMOT
and Xolotl for simulation of intra- and inter-
granular fission gas evolution. Input to

Xolotl-
MARMOTUranium diffusion Xe defect concentrations Xe diffusion

1. R. Perriot, et al., J. Nucl. Mater. 520, 96-109 (2019). 2. C. Matthews, et al., under review (2019). 3. C. Matthews, et al., to be submitted (2019).

Interstitial cluster aggregates in UO2 from MD/AMD

Tri-interstitial
(anti-Schottky)
cluster migrating
towards single
interstitial at
1000K

<111>/3
Frank loop
forms via
10-
interstitial
cluster

<111> view

<110> view

Number of
migration

events from
20 to ~250

during
AMD/MD

simulations

576 processors
for 16 hrs using
AMD (total
AMD simulation
time 0.5 µs)

Em=0.47 eV

Em=0.78 eV

§ Fast diffusion of Ui2Oi, formed under irradiation, by an interstitialcy mechanism.
§ Accelerated molecular dynamics (AMD) and MD simulations using two empirical

potentials to understand the cluster migration dynamics vs. cluster size.
§ Even faster migration of larger interstitial clusters.

Sensitivity and UQ analysis of FECD

§ The FECD cluster dynamics model is complex with inherent uncertainties for the
parameter set and the current predictions involve by hand “calibration” to known
experimental data.

§ Use formal sensitivity and UQ analysis to understand the parameter influence as
well as formalize “calibration” to a limited set of experiments.

§ Ground work for full multi-scale calibration of MARMOT-Xolotl simulation of
fission gas evolution informing reduced order engineering scale models.

§ First perform sensitivity analysis to identify influential FECD input parameters,
using uniform uncertainty specifications from expert opinion.

§ Use a global sensitivity approach – accounting for variation of all parameters at
all conditions (not just local perturbations).

§ Multiple strategies for estimating global sensitivity indices, decide to use a
Polynomial Chaos Expansion surrogate approach that assumes a degree of
smoothness in the FECD mapping across input space.

§ Sensitivity (Sobol) indices extracted from coefficients
of a PCE fit to FECD samples.

§ PCE smoothness approximation - should require
fewer FECD runs for sensitivity index convergence.

§ PCE coefficients approximated using least-squares
regression with random samples – can ignore sample
points from failed runs.

§ Expect many non-influential input parameters, so use
a sparse regularization approach to efficiently find
zero valued sensitivities (requiring fewer FECD runs).

Sensitivity indices of FECD extracted from PCE

histogram of samples from
uniform PDF on FECD

parameter

convergence of sensitivity
index calculation for

number of FECD runs

2D sensitivity index map
across all quantities of

interest

sensitivity indices

20 dominating parameters in FECD

§ Identified on the order of 20 parameters (out of original 177) that dominate the
model output variance across all diffusivities at all temperatures (36 quantities of
interest).

§ Can now construct a surrogate model taking only these 20 parameters (or fewer)
into account.

UQ plans, targets and work in progress

§ The sensitivity analysis procedure involved
building a surrogate model for the FECD
computed diffusivities as a function of
uncertain inputs (λ) at multiple temperatures
using a polynomial expansion:

§ Can use this polynomial to cheaply compute
FECD outputs for specific inputs. Enables the
solution of an inverse problem to calibrate
particular parameters (β) against experimental
data (z) using Bayesian inference:

§ Ultimately FECD predictions will be used to
construct surrogates for Xolotl/MARMOT
simulations in concert with other uncertain
Xolotl/MARMOT input parameters with
associated sensitivity analysis for down-
selection.

FECD/surrogate output

Experimental data

Xolotl, reaction-diffusion-advection cluster dynamics

• Xolotl (sho-lo-till) is the Aztec god of lightning and death
• Started for plasma-surface interaction modeling for PSI

fusion SciDAC (2012-2017)
• Spatially-resolved, time evolution of clusters of atoms,

vacancies, interstitials within material based on kinetics
• Including reaction, diffusion, advection, etc.
• Material represented with a rectangular spatial grid (variable)
• 0d, 1d, 2d, 3d models switchable at run time

• Bubble formation and evolution is major scientific focus (but not exclusive)

Xolotl is available at https://github.com/ORNL-Fusion/xolotl/

UO2 fuel Computational grid
w/ cluster concentrations

Bubble re-solution model in Xolotl

§ Used the built-in performance infrastructure (developed by P. Roth) to identify
that majority of the time difference was spent in computing and setting the
Jacobian elements.

§ Switched to setting the Jacobian elements in PETSc in batches instead of
individually.

§ The difference in timing is now only 1.2 times slower.

Resolution rate from Xe bubbles from MD1

1. W. Setyawan, et al., J. App.
Phys. 124, 075107 (2018).

𝑏 = (𝑎%𝑒'()* +
𝑦 0 − 𝑎%
1 + 𝑐𝑥2 𝑒'(3*3)× 10'6

§ The re-solution rate is used to
model the reaction with a rate
of k-:

𝑋𝑒8 → 𝑋𝑒8'% + 𝑋𝑒
𝑘' = 𝑏 × 10; × 4 × 𝑋𝑒=>?@

§ Initial implementation of re-
solution slowed Xolotl by ~2X

Impact of gas bubble re-solution in Xolotl
• Implementation of the homogenous re-solution model leads to significant

modification to the Xenon bubble size distribution (for nominal fission rate density
of 1019 fissions m-3 s-1) at 1000°C, and to a lesser extent at 1560°C at a time
of 7x107 seconds (~3% burnup).

• Size distribution hints at beginning stages of a bi-modal size distribution,
especially at lower Temperatures but also results in a larger average size (less
pronounced at higher Temperatures due to faster Xe diffusion).

• Continuing efforts to assess key sensitivities in model & benchmark to
experimental data for validation.

MARMOT meso-scale fuel performance tool

• Predicts the coevolution of microstructure and properties in
nuclear materials.

Technique: Phase field coupled with large deformation solid
mechanics and heat conduction solved with implicit finite elements
using INL’s MOOSE framework

MARMOT:
• Uses FEM with implicit time integration
• Built on the LibMesh FEM library
• 1D, 2D, or 3D without recompile
• System is solved using Newton or

JFNK (GMRES) via PETSc
• Employs mesh and time step adaptivity

10−3 10−1 101 103

10−3

10−1

101

Time

dt

Physical models include:
• UO2 (sintering, grain growth, fission gas, fracture)
• U-Zr (species transport, phase change, swelling)
• U-Si (grain growth, fission gas, swelling)
• Zircaloy cladding (Hydride formation)
• FeCrAl cladding (Creep, Swelling)

The MARMOT fission gas model

• The model predicts the growth and coalescence of fission gas bubbles
within grains and on grain boundaries to better understand fission gas
release.

• MARMOT fission gas model predicts:
– Transport of gas atoms and U vacancies (2 DOF).
– Void growth and coalescence (1 DOF).
– Grain boundary migration (1 – 20 DOF).

• The model uses 4 – 22 DOF per node.
• From Aagesen et al. Comp. Mat. Sci. 161 (2019): 35-45.

33 days 77 days 106 days 145 days

MARMOT performance and scalability

§ MARMOT scalability using > 8000 processors has been improved through the
development of a hierarchical partitioning algorithm in PETSc and a novel node
assignment algorithm in libMesh.

Fig. 5: Different mesh node assignment schemes. Left: shared
mesh nodes are assigned to the neighboring MPI process with
the lower rank. Middle: mesh nodes with odd IDs are assigned
to the lower MPI rank, even IDs are assigned to the higher
MPI rank. Right: shared interface nodes are partitioned into
two parts using a partitioning algorithm such as ParMetis or
PTScotch. The approach on the right is the most efficient for
the test case discussed in Sec. IV.

to scale unpredictably, and is not optimal for preserving the
locality of an element and its neighbor’s data structures, which
can be detrimental to the efficiency of a finite element solver.

We propose a novel algorithm to resolve this issue. The
basic idea is to apply a partitioner to each pair of MPI
processes at the lower-dimensional shared interface between
processor boundaries, and assign one resulting submesh to
each neighboring MPI rank. Note that each interface mesh
is shared by only two MPI processes. The basic idea is shown
in Fig. 5 in detail. This new mesh node assignment algorithm
is implemented in libMesh.

IV. TEST CASE

In this section, we verify the effectiveness of the proposed
algorithms with a test case. The parallel preconditioning
efficiency of the proposed hierarchical partitioner is compared
to that obtained by applying ParMETIS and PTScotch directly.
In particular, the novel node assignment algorithm based on the
interface mesh partitioning will be shown to significantly im-
prove preconditioning performance. Due to space constraints,
we restrict our testing to a single grain growth example here,
but the proposed algorithm also works for other physical
applications.

Grain growth is the increase in size of grains in a material
due to a reduction of the internal energy that is achieved by
reducing the total area of grain boundaries (GBs). GBs migrate
to reduce the total free energy of the system. Various sources
of free energy drive the GB migration process, including
stored defect energy, deformation energy, and GB energy.
Various modeling approaches have been applied to model grain
boundary migration, and the phase field method has emerged
as one of the more popular. In the phase field model, each
grain is represented by a continuous order parameter ⌘

i

that is
equal to 1 within the grain and equal to 0 in all other grains.
The free energy for this problem is

f
loc

= µ

0

@
NX

i

✓
⌘4
i

4

� ⌘2
i

2

◆
+ �

NX

i=1

NX

j>i

⌘2
i

⌘2
j

1

A
+

1

4

(1)

Fig. 6: Solution at t = 25ns and t = 250ns.

where N is the number of order parameters, and µ, � are ma-
terial coefficients. The ⌘

i

evolve in space and time according
to the Allen-Cahn equation,

@⌘
j

@t
= �L

j

�F

�⌘
j

, (2)

where L
j

is the order parameter mobility. Here F is defined
as:

F =

Z

V

⇥
f
loc

(⌘1, . . . , ⌘N) + f
gr

(⌘1, . . . , ⌘N)

⇤
dV, (3)

where the gradient energy density f
gr

is

f
gr

=

NX

j


j

2

|r⌘
j

|2. (4)

The model parameters L
j

, µ and 
j

are defined in terms of the
grain boundary (GB) surface energy �, the diffuse GB width
w

GB

and the GB mobility m
GB

. The values of the parameters
used in the present simulation are: L

j

= 0.0354524, µ =

0.662848, � = 1.5 and 
j

= 132.57.
Eq. (2) is discretized in 3D with 25 grains and 9 order

parameters using a first order Lagrange finite element method
in MOOSE [23]. (The order parameters are reused for more
than one grain based on a coloring of the adjacency matrix
representing the grain connection of the microstructures.)
The resulting nonlinear system is solved using a Jacobian-
free Newton–Krylov method [24], employing GMRES [25]
together with a restricted additive Schwarz preconditioner [26],
[27]. The impact of the various mesh partitioning methods
on the preconditioning efficiency are reported below. For
reference, the solution at t = 25ns and 250ns is shown in
Fig. 6.

We initially solve this problem on a relatively “coarse”
mesh with 9,830,400 hexahedral elements, 9,994,977 nodes
and 89,954,793 unknowns. The preconditioner performance
for 10 time steps obtained using various partitioning schemes
is reported in Table II. The columns of the table are defined as
follows: np is the number of processor cores, “EPart” denotes
the partitioner used for partitioning the mesh, “PCSetup” is the
compute time in seconds spent on the preconditioner setup,
“PCApply” is the compute time in seconds spent on the
application of the preconditioner, “PCSEFF” is the parallel
efficiency of the preconditioner setup, and “PCAEFF” is the
parallel efficiency of the preconditioner application. “NR” is
the ratio of the maximum mesh node count to the minimum

Fig. 2: A 2D hierarchical partitioning example. The original
mesh in the top left is partitioned into the two submeshes
shown in the top right, and each sub-mesh is further partitioned
into the 4 small submeshes shown in the second row.

Fig. 3: A 3D hierarchical partitioning 3D example. As in the
2D case, the 3D mesh is partitioned into 2 submeshes at the
first step, and then each submesh is subsequently split into 4
smaller submeshes.

processor cores on the same compute node.
To fix ideas and assist in describing the algorithm, let us

denote the dual graph of the mesh as G = ({v
i

}, {e
j

}), where
v
i

is a graph vertex corresponding to a mesh element, and e
j

is
a graph edge representing a mesh element side. The number
of graph vertices {v

i

} is denoted by nv, and a partition is
represented by an integer array P = {p

i

}, p
i

2 [0, np), of size
nv. Vertices v

i

and v
j

are assigned to the same partition if and
only if p

i

= p
j

. The number of times p
i

is repeated indicates
how many vertices are assigned to partition p

i

. To carry out
the partitioning scheme in parallel, the graph G is assumed
to be initially distributed across the processor cores. This can
be accomplished by computing e.g. the “trivial” partitioning
defined by assigning the first chunk of vertices (ordered by
vertex ID) to the first processor, the second chunk to the
second processor, and so on.

In the first step of the hierarchical partitioning scheme, the

distributed graph G is partitioned by applying an existing al-
gorithm such as ParMETIS or PTScotch to produce a partition
P 1

= {p1
i

}, p1
i

2 [0, np1), i = 0, 1, . . . , nv � 1. In order to
carry out the second partitioning step, np1 subgraphs have to
be assembled and allocated to the first np1 processors, with
each processor taking one subgraph. If the partitioning process
is carried out as a preprocessing step, the number of processor
cores used in the second step can be smaller than np1. If this
happens, more than one subdomain will be allocated to the
same processor core. We do not discuss this situation in the
present work since it is straightforward to extend the algorithm
to handle it, but our implementation in PETSc does support
this use case.

Two steps are required to construct a local graph from P 1.
The information in P 1 tells us where we should send the
vertex IDs, i.e. v

i

should be sent to the p1
i

th processor, but the
required data can’t be exchanged in a single communication
step. Instead, communication ranks and data sizes have to
be discovered before the vertex IDs can be sent. The two-
sided information discovery operation is carried out using the
algorithm discussed in [19].

After the discovery, each processor knows how much infor-
mation it will receive and from whom it will receive it. The
one-to-many sparse communication pattern is efficiently im-
plemented by the “star forest” communication object in PETSc
called PetscSF [20]. This vertex ID exchange algorithm is
summarized and implemented in the ISBuildTwoSided

routine in PETSc.
Once the vertex exchange is complete, a vertex set V

c

is
created for the cth processor, where c 2 [0, np1 � 1]. A
subgraph G

c

is extracted from the global graph G through,
once again, a sparse communication. The size of G

c

is denoted
as nv

c

. Finally, a serial partitioner (or parallel partitioner
on a single processor) is applied to partition G

c

to produce
˜P 2
c

= {p2
c,k

}, p2
c,k

2 [0, np2 � 1), k = 0, 1, . . . , nv
c

� 1, c =

0, 1, . . . , np1�1. The ˜P 2
c

are sent back to the original owners,
and then are merged based on the global vertex IDs. The new
second-step partition is denoted as P 2

= {p2
i

}, p2
i

2 [0, np2�
1), i = 0, 1, . . . , nv�1, the entries of which are a permutation
of {p20,0, p20,1, . . . , p20,nv0�1, . . . , p

2
c,0, p

2
c,1, . . . , p

2
c,nvc�1, . . .}.

The final partition P is defined as follows:

P = {p
i

= p1
i

⇥ np2 + p2
i

}, p1
i

2 P 1, p2
i

2 P 2.

The entire process is summarized in Algorithm 1, where we
assume G is initially distributed across the processors.

For some applications we need an arbitrary number, np,
of subgraphs, but np cannot be factored into np1 ⇥ np2.
Algorithm 1 has to be adjusted to handle this situation, and
our basic approach is to apply subdomain weights in the first
step so that a subgraph may have a different size from other
subgraphs, depending on how many smaller subgraphs it will
be further divided into. The remainder r = np mod np2 is
computed for a user-specified np2 (usually np2 is the number
of processor cores per compute node), and np1 is calculated

Fig. 2: A 2D hierarchical partitioning example. The original
mesh in the top left is partitioned into the two submeshes
shown in the top right, and each sub-mesh is further partitioned
into the 4 small submeshes shown in the second row.

Fig. 3: A 3D hierarchical partitioning 3D example. As in the
2D case, the 3D mesh is partitioned into 2 submeshes at the
first step, and then each submesh is subsequently split into 4
smaller submeshes.

processor cores on the same compute node.
To fix ideas and assist in describing the algorithm, let us

denote the dual graph of the mesh as G = ({v
i

}, {e
j

}), where
v
i

is a graph vertex corresponding to a mesh element, and e
j

is
a graph edge representing a mesh element side. The number
of graph vertices {v

i

} is denoted by nv, and a partition is
represented by an integer array P = {p

i

}, p
i

2 [0, np), of size
nv. Vertices v

i

and v
j

are assigned to the same partition if and
only if p

i

= p
j

. The number of times p
i

is repeated indicates
how many vertices are assigned to partition p

i

. To carry out
the partitioning scheme in parallel, the graph G is assumed
to be initially distributed across the processor cores. This can
be accomplished by computing e.g. the “trivial” partitioning
defined by assigning the first chunk of vertices (ordered by
vertex ID) to the first processor, the second chunk to the
second processor, and so on.

In the first step of the hierarchical partitioning scheme, the

distributed graph G is partitioned by applying an existing al-
gorithm such as ParMETIS or PTScotch to produce a partition
P 1

= {p1
i

}, p1
i

2 [0, np1), i = 0, 1, . . . , nv � 1. In order to
carry out the second partitioning step, np1 subgraphs have to
be assembled and allocated to the first np1 processors, with
each processor taking one subgraph. If the partitioning process
is carried out as a preprocessing step, the number of processor
cores used in the second step can be smaller than np1. If this
happens, more than one subdomain will be allocated to the
same processor core. We do not discuss this situation in the
present work since it is straightforward to extend the algorithm
to handle it, but our implementation in PETSc does support
this use case.

Two steps are required to construct a local graph from P 1.
The information in P 1 tells us where we should send the
vertex IDs, i.e. v

i

should be sent to the p1
i

th processor, but the
required data can’t be exchanged in a single communication
step. Instead, communication ranks and data sizes have to
be discovered before the vertex IDs can be sent. The two-
sided information discovery operation is carried out using the
algorithm discussed in [19].

After the discovery, each processor knows how much infor-
mation it will receive and from whom it will receive it. The
one-to-many sparse communication pattern is efficiently im-
plemented by the “star forest” communication object in PETSc
called PetscSF [20]. This vertex ID exchange algorithm is
summarized and implemented in the ISBuildTwoSided

routine in PETSc.
Once the vertex exchange is complete, a vertex set V

c

is
created for the cth processor, where c 2 [0, np1 � 1]. A
subgraph G

c

is extracted from the global graph G through,
once again, a sparse communication. The size of G

c

is denoted
as nv

c

. Finally, a serial partitioner (or parallel partitioner
on a single processor) is applied to partition G

c

to produce
˜P 2
c

= {p2
c,k

}, p2
c,k

2 [0, np2 � 1), k = 0, 1, . . . , nv
c

� 1, c =

0, 1, . . . , np1�1. The ˜P 2
c

are sent back to the original owners,
and then are merged based on the global vertex IDs. The new
second-step partition is denoted as P 2

= {p2
i

}, p2
i

2 [0, np2�
1), i = 0, 1, . . . , nv�1, the entries of which are a permutation
of {p20,0, p20,1, . . . , p20,nv0�1, . . . , p

2
c,0, p

2
c,1, . . . , p

2
c,nvc�1, . . .}.

The final partition P is defined as follows:

P = {p
i

= p1
i

⇥ np2 + p2
i

}, p1
i

2 P 1, p2
i

2 P 2.

The entire process is summarized in Algorithm 1, where we
assume G is initially distributed across the processors.

For some applications we need an arbitrary number, np,
of subgraphs, but np cannot be factored into np1 ⇥ np2.
Algorithm 1 has to be adjusted to handle this situation, and
our basic approach is to apply subdomain weights in the first
step so that a subgraph may have a different size from other
subgraphs, depending on how many smaller subgraphs it will
be further divided into. The remainder r = np mod np2 is
computed for a user-specified np2 (usually np2 is the number
of processor cores per compute node), and np1 is calculated

New PETSc hierarchical partitioning algorithm
partitions graph into subgraphs that are then
partitioned into smaller subgraphs .

New libMesh node assignment algorithm applies
partitioner to neighboring MPI processes and assigns
one submesh to neighboring MPI ranks.

TABLE IV: Partitioner performance on “fine” mesh with
78,643,200 elements. PTScotch is omitted because it was not
able to successfully generate any partitions of the fine mesh.

np EPart PCSetup PCApply PCSEFF PCAEFF NR

8,192 Hierarch 134.59 80.65 100% 100% 1.14
8,192 ParMETIS 138.69 98.28 97% 82% 2.4

10,240 Hierarch 115.63 71.494 93% 90% 1.16
10,240 ParMETIS 121.50 78.499 88% 82% 1.87

16,384 Hierarch 78.59 41.905 86% 96% 1.22
16,384 ParMETIS 85.610 68.675 79% 59% 1.64

24,576 Hierarch 56.463 29.589 79% 90% 1.24
24,576 ParMETIS 65.17 41.857 69% 64% 3.2

32,768 Hierarch 47.99 20.717 70% 97% 1.34
32,768 ParMETIS 54.165 34.801 62% 58% 1.79

Fig. 9: Speedup and parallel efficiency for various partitioning
approaches vs. core count on the “fine” mesh problem.

Table IV, where it is once again observed that the hierar-
chical partitioner improves the preconditioner performance
significantly, as compared to ParMETIS. The PTScotch results
are omitted in this case since that partitioner was unable to
generate a partition of the fine mesh in any of the cases tested.

For the 8,192-core case, “NR” is only 1.14 (close to a
perfect balance ratio) when using Hierarch, while it is 2.4
when using ParMETIS. The preconditioning process is 20%

faster for Hierarch than it is for ParMETIS. The ParMETIS
partitioner’s performance can also be irregular, as observed
in the 24,576-core case where “NR” is 3.2 for ParMETIS
and only 1.24 for Hierarch. This imbalance leads to much
slower preconditioner application and setup times (12s and
10s, respectively) for the ParMETIS partitioner.

The corresponding parallel efficiencies have a similar pat-
tern, that is, the parallel efficiency of the preconditioner
application for Hierarch is 30% higher than that of ParMETIS,
and the parallel efficiency of the preconditioner setup for
Hierarch is 10% higher than that of ParMETIS. The speedup
and parallel efficiency for the “fine” mesh case are also
summarized in Fig. 9.

Similarly, we compare the preconditioning performance for
the new node assignment approach with using the “default”
node assignment heuristic. We observe that, especially when
the number of processor cores is large, it is essential to
maintain a workload balance in order to achieve good parallel
efficiency. For example, when we use 32,768 processor cores,
“NR” is 2.02 for the default node assignment, while it is
1.34 for the partitioning-based node assignment, and these

TABLE V: Effect of different node assignment strategies for
the “fine” mesh. The slightly superlinear PCAEFF value in
the 10,240 core case is sometimes observed at smaller core
counts depending on the partitioner, but does not signify a
general trend.

np NAS PCSetup PCApply PCSEFF PCAEFF NR

8,192 default 146.42 89.844 92% 90% 1.51
8,192 part 134.59 80.65 100% 100% 1.14

10,240 default 117.35 62.092 92% 104% 1.56
10,240 part 115.63 71.494 93% 90% 1.16

16,384 default 83.736 49.294 80% 82% 1.72
16,384 part 78.59 41.905 86% 96% 1.22

24,576 default 62.149 36.264 72% 74% 1.89
24,576 part 56.463 29.589 79% 91% 1.24

32,768 default 52.769 29.520 64% 68% 2.02
32,768 part 47.99 20.717 70% 97% 1.34

Fig. 10: Speedup and parallel efficiency for different node
assignment algorithms vs. core count on the “fine” mesh
problem.

different balance ratios lead to significantly different overall
performance levels. The parallel efficiency of the precondi-
tioner application for the partitioner-based node assignment is
20% higher than that of the default node assignment algorithm,
while the parallel efficiency of the preconditioner setup is
about 10% better. The parallel efficiency and the speedup for
the different node assignment algorithms are also summarized
in Fig. 10.

V. CONCLUSIONS AND FUTURE WORK

A general-purpose hierarchical mesh partitioning method
was introduced and discussed for large-scale scientific com-
puting. The partitioner distributes graphs recursively onto both
np1 (the number of compute nodes) and np2 (usually  the
number of processor cores per compute node) subdomains.
Note that np2 can be different on each compute node, mak-
ing the hierarchical partitioning algorithm useful for general
calculations on heterogeneous collections of nodes.

Mesh nodes on inter-processor interfaces are often assigned
to the lower MPI rank by default, and this simple choice can
lead to a significant load imbalance. The issue is addressed
by introducing a new node balancing algorithm in which a
graph corresponding to the interface mesh shared by two
processor cores is partitioned into two submeshes using a
partitioner, and one submesh is assigned to the lower MPI
rank while the other is sent to the higher MPI rank. This

TABLE IV: Partitioner performance on “fine” mesh with
78,643,200 elements. PTScotch is omitted because it was not
able to successfully generate any partitions of the fine mesh.

np EPart PCSetup PCApply PCSEFF PCAEFF NR

8,192 Hierarch 134.59 80.65 100% 100% 1.14
8,192 ParMETIS 138.69 98.28 97% 82% 2.4

10,240 Hierarch 115.63 71.494 93% 90% 1.16
10,240 ParMETIS 121.50 78.499 88% 82% 1.87

16,384 Hierarch 78.59 41.905 86% 96% 1.22
16,384 ParMETIS 85.610 68.675 79% 59% 1.64

24,576 Hierarch 56.463 29.589 79% 90% 1.24
24,576 ParMETIS 65.17 41.857 69% 64% 3.2

32,768 Hierarch 47.99 20.717 70% 97% 1.34
32,768 ParMETIS 54.165 34.801 62% 58% 1.79

Fig. 9: Speedup and parallel efficiency for various partitioning
approaches vs. core count on the “fine” mesh problem.

Table IV, where it is once again observed that the hierar-
chical partitioner improves the preconditioner performance
significantly, as compared to ParMETIS. The PTScotch results
are omitted in this case since that partitioner was unable to
generate a partition of the fine mesh in any of the cases tested.

For the 8,192-core case, “NR” is only 1.14 (close to a
perfect balance ratio) when using Hierarch, while it is 2.4
when using ParMETIS. The preconditioning process is 20%

faster for Hierarch than it is for ParMETIS. The ParMETIS
partitioner’s performance can also be irregular, as observed
in the 24,576-core case where “NR” is 3.2 for ParMETIS
and only 1.24 for Hierarch. This imbalance leads to much
slower preconditioner application and setup times (12s and
10s, respectively) for the ParMETIS partitioner.

The corresponding parallel efficiencies have a similar pat-
tern, that is, the parallel efficiency of the preconditioner
application for Hierarch is 30% higher than that of ParMETIS,
and the parallel efficiency of the preconditioner setup for
Hierarch is 10% higher than that of ParMETIS. The speedup
and parallel efficiency for the “fine” mesh case are also
summarized in Fig. 9.

Similarly, we compare the preconditioning performance for
the new node assignment approach with using the “default”
node assignment heuristic. We observe that, especially when
the number of processor cores is large, it is essential to
maintain a workload balance in order to achieve good parallel
efficiency. For example, when we use 32,768 processor cores,
“NR” is 2.02 for the default node assignment, while it is
1.34 for the partitioning-based node assignment, and these

TABLE V: Effect of different node assignment strategies for
the “fine” mesh. The slightly superlinear PCAEFF value in
the 10,240 core case is sometimes observed at smaller core
counts depending on the partitioner, but does not signify a
general trend.

np NAS PCSetup PCApply PCSEFF PCAEFF NR

8,192 default 146.42 89.844 92% 90% 1.51
8,192 part 134.59 80.65 100% 100% 1.14

10,240 default 117.35 62.092 92% 104% 1.56
10,240 part 115.63 71.494 93% 90% 1.16

16,384 default 83.736 49.294 80% 82% 1.72
16,384 part 78.59 41.905 86% 96% 1.22

24,576 default 62.149 36.264 72% 74% 1.89
24,576 part 56.463 29.589 79% 91% 1.24

32,768 default 52.769 29.520 64% 68% 2.02
32,768 part 47.99 20.717 70% 97% 1.34

Fig. 10: Speedup and parallel efficiency for different node
assignment algorithms vs. core count on the “fine” mesh
problem.

different balance ratios lead to significantly different overall
performance levels. The parallel efficiency of the precondi-
tioner application for the partitioner-based node assignment is
20% higher than that of the default node assignment algorithm,
while the parallel efficiency of the preconditioner setup is
about 10% better. The parallel efficiency and the speedup for
the different node assignment algorithms are also summarized
in Fig. 10.

V. CONCLUSIONS AND FUTURE WORK

A general-purpose hierarchical mesh partitioning method
was introduced and discussed for large-scale scientific com-
puting. The partitioner distributes graphs recursively onto both
np1 (the number of compute nodes) and np2 (usually  the
number of processor cores per compute node) subdomains.
Note that np2 can be different on each compute node, mak-
ing the hierarchical partitioning algorithm useful for general
calculations on heterogeneous collections of nodes.

Mesh nodes on inter-processor interfaces are often assigned
to the lower MPI rank by default, and this simple choice can
lead to a significant load imbalance. The issue is addressed
by introducing a new node balancing algorithm in which a
graph corresponding to the interface mesh shared by two
processor cores is partitioned into two submeshes using a
partitioner, and one submesh is assigned to the lower MPI
rank while the other is sent to the higher MPI rank. This

Xolotl-MARMOT coupling: Approach

§ The coupled code uses
– cluster dynamics in Xolotl to consider fission gas transport bubble behavior

within grains.
– Phase field method in MARMOT to consider intergranular fission gas

bubbles.

Xolotl
• Models intragranular

bubble behavior
• Includes gas atom

production and resolution
• Computes flux of gas

atoms to interfaces

MARMOT
• Predicts intergranular

bubble growth and
coalescence

• Evolves grain structure

Gas atom flux at GBs

Interface locations

Xolotl-MARMOT coupling: Mesh interpolation

§ The coupling is managed using the MOOSE ‘MultiApps’ and ‘Transfers’
systems.

Master app. mesh MOOSE-Xolotl wrapper mesh Xolotl grid

• Data transfer between nonidentical mesh.
• Mesh adaptivity is available in MARMOT.

Interpolation transfer Direct copy

• Positions of every node should be identical.
• Parallelism is identical and data passing is

done locally on each node.

Microstructure

Gas source

Interface coordinates

Gas source

Xolotl-MARMOT coupling: Initial results

§ We have coupled the two codes to model fission gas behavior in 2D
polycrystalline UO2.

Passed from Xolotl2 μm

Microstructure Xe generation rate Xe concentration
Red: fuel
Blue: bubble

Xolotl-MARMOT coupling: Model comparisons
§ Capturing more accurate physics in Xolotl directly changes MARMOT predictions

Only
MARMOT

No Clustering & No
Re-solution

Clustering & No
Re-solution

Clustering & Re-
solution

Xolotl-MARMOT coupling: Performance analysis
§ Division of computation time between codes:

– The data transfer between coupled codes costs negligible time (~1% or less).
– Addition of physics (clustering & re-solution) changes overall computation

time and division.

– The # of processors is also a factor changing the division of computation time

No Clu. & No Re-s. Clu. & No Re-s. Clu. & Re-s.
Physics considered

0

2000

4000

6000

8000

10000

12000

14000

16000
W

al
l t

im
e

(s
)

Data transfer
MOOSE-PF solver
Xolotl solver

No Clu. & No Re-s. Clu. & No Re-s. Clu. & Re-s.
Physics considered

0

5

10

15

W
al

l t
im

e
(s

)

Data transfer

No Clu. & No Re-s.

1 2 4 8 16 32 64
of processors

0

2000

4000

6000

8000

10000

12000

W
al

l t
im

e
(s

)

Data transfer
MOOSE-PF solver
Xolotl solver

Clu. & No Re-s.

1 2 4 8 16 32 64
of processors

0

2000

4000

6000

8000

10000

12000

W
al

l t
im

e
(s

)

Data transfer
MOOSE-PF solver
Xolotl solver

Clu. & Re-s.

1 2 4 8 16 32 64
of processors

0

2000

4000

6000

8000

10000

12000

W
al

l t
im

e
(s

)

Data transfer
MOOSE-PF solver
Xolotl solver

UF HyperGator
acknowledged
for computer
resources.

§ Initial assessment of scalability of the coupled code was carried out.
§ Strong scaling:

– 2D, 125 x 125 elements with 126 x 126 nodes
– # of DOF per node = 9*

– Variable: # of processors

Xolotl-MARMOT coupling: Strong scaling

10 20 30 40 50 60
of processors

10

20

30

40

50

60

Sp
ee

du
p

Ideal
MOOSE-standalone
Coupled (No Clu. & No Re-s.)
Coupled (Clu. & No Re-s.)
Coupled (Clu. & Re-s.)

10 20 30 40 50 60
of processors

10

20

30

40

50

60

Sp
ee

du
p

Ideal
Coupled (No Clu. & No Re-s.)
MOOSE-PF solver
Xolotl solver

*If clustering is considered, # of DOF = 1008

Xolotl-MARMOT coupling: Weak scaling

§ Weak scaling
– # of nodes per area of simulation domain: 32.1 μm-2 (fixed)
– Problem sizes: (9 μm)2, (18 μm)2, (27 μm)2, (36 μm)2, (45 μm)2

– # of processors: 8, 32, 72, 128, 200

8 32 72 128 200
of processors

0

0.5

1

1.5

2

Sp
ee

du
p

Ideal
MOOSE-standalone
Coupled (No Clu. & No Re-s.)
Coupled (Clu. & No Re-s.)
Coupled (Clu. & Re-s.)

8 32 72 128 200
of processors

0

0.5

1

1.5

2

Sp
ee

du
p

Ideal
Coupled (No Clu. & No Re-s.)
MOOSE-PF solver
Xolotl solver

§ First strong scaling performed in
2D.

§ Used hpctoolkit to identify a
MPI_Allreduce() call that was
taking most of the time.

§ This call is needed in the fusion
application Xolotl was originally
developed for (the solver is
common for all the applications).

§ Added an option to skip this part
of the solver when it is not
needed.

Xolotl strong scaling and improvements

§ After optimization, when only diffusion is happening (no clustering), hpctoolkit
shows that what takes the most time is applying the pre-conditioner in PETSc.

Xolotl-MARMOT coupling: Future work

§ Now that we have demonstrated the coupled code in 2D, we will make
improvements to enable 3D simulations

§ Future work:

10 20 30 40 50 60
of processors

10

20

30

40

50

60

Sp
ee

du
p

Ideal
Coupled (No Clu. & No Re-s.)
MOOSE-PF solver
Xolotl solver

We will improve the
parallel scalability of Xolotl

We will investigate the
performance of the
coupled model in 3D

We will validate the model
by comparing to published
data

Progress already
accomplished!

Engineering model of intra-granular bubble evolution

• Considers nanometric bubbles in the bulk (b),
coarsened bubbles at dislocations (d, highlighted
terms) and dissolved gas atoms (c1).

• Bubble coarsening important for gaseous swelling
during transients/high burnup.

• Vacancy inflow at coarsening bubbles through
pipe diffusion along dislocations:

Engineering-Scale Modeling of Intra-granular Fission Gas Bubble Evolution in Uranium Dioxide

June 2019 progress report

Within the SciDAC project on Simulation of Fission Gas in Uranium Oxide Nuclear Fuel, the engineering-
scale development effort at INL aims to develop improved models for intra-granular fission gas bubble
evolution and gas diffusion to be applied in fuel performance codes such as Bison. During FY-17 and FY-
18, we developed a reduced parameter model for the evolution of intra-granular fission gas bubbles coupled
to diffusion of gas atoms to grain boundaries during normal operating reactor conditions. Details are given
in the FY-18 INL milestone report [1] and in publications related to this work [2-4].

During FY-19, the bulk of the work performed to date at INL was devoted to developing an extended fission
gas bubble evolution model that is able to capture transient behavior. In particular, the model was extended
to account for the so-called bubble coarsening and the associated fuel swelling during transients. This
generalization required in the first place the development of a reliable theory for the coarsening
mechanisms. Then, a reduced parameter approach for application to engineering codes was developed.
Furthermore, early validation to experimental data of bubble sizes in transient-tested fuel was performed.

In addition to this, during FY-19, the original normal operation model was further developed by coupling
to atomistic calculations for gas atom diffusivity in Cr2O3 doped UO2 performed at LANL. The enhanced
model was applied in Bison fuel rod simulations, demonstrating the impact of the multiscale coupling.
These FY-19 developments and applications of the engineering fission gas model are presented below.

New model for intra-granular bubble evolution during transients

During normal operating conditions, intra-granular fission gas bubbles generally have diameters of one to
a few nanometers. However, experiments have shown that during transient conditions such as power ramps,
a strongly bi-modal bubble size distribution develops, with the appearance of a second population of
coarsened bubbles with diameters of tens to hundreds of nm [5-7]. Bubble coarsening is associated with
large local gaseous swelling during transients [5,7] and is therefore of high engineering importance. Recent
research at INL within this SciDAC project has led to the development of a bubble coarsening theory that
invokes the role of dislocations as a source of vacancies and preferential bubble growth along dislocations.
This theory finds support in the experimental observations showing coarsened bubbles associated with
dislocations (e.g., [7,8]). It also appears to be a straightforward conceptual extension to dislocation defects
of the established behavior at grain boundary defects.
The newly developed transient model extends the normal operating conditions model developed in previous
years by adding the evolution of a second population of bubbles along dislocations, which is subject to
coarsening. The coarsening mechanism is naturally activated during transient conditions according to the
physical representation in the model. While both small bubbles in the bulk and coarsening bubbles at
dislocations are modeled, only the average size of each population is considered. In the following, we
provide a brief summary of the model, leaving a detailed description and expressions for the parameters to
a future publication. The governing equations in the model’s final form are:
!"#
!$ = & − ()#****+,

!-#
!$ = 2& + 0)#****+, − ()#****1,

!23
!$ = 45 + 6789: − 2& − 0)#****+, + ()#****1, − 0′9: − 0)<****+= + ()<****1= (1)

!"<
!$ = >?=@(B − BC) − ()<****+=

!-<
!$ = 0′9: + 0)<****+= − ()<****1=

where @ is the time, +, and +0 (m-3) the number densities of bubbles in the bulk and at dislocations,
respectively, 5, and 50 (m-3) the concentrations of gas atoms in bubbles, A,*** = 5, +,⁄ and A0**** =
50 +0⁄ (-) the average numbers of gas atoms per bubble, 78	(m

-3) the concentration of single gas atoms,

& (m-3s-1) the rate of bubble nucleation in the bulk, 4) (s-1) the rate of gas atom trapping at bubbles of size

A, 4′ (s-1) the trapping rate at dislocations, () (s-1) the re-solution rate from bubbles of size A, . (m-1) a
constant, D0 (m-2) the dislocation density, ; (/) the yield of fission gas atoms, < (m-3s-1) the fission rate

density, = (m2s-1) the diffusion coefficient of single gas atoms.

The solution of Eq. 1 provides the rate of single gas atom diffusion to grain boundaries, the number
density of both bubbles in the bulk and at dislocations, and the average number of atoms per bubble. The
radius of bubbles in the bulk is calculated considering a constant gas density as [1-3]

E, = FA,***
8/H (2)

For bubbles at dislocations, vacancy absorption is considered using the following model:

!)I****

!$
=

?JKI,MNMO,

PQR
S
PQ

T

)-****

)I****
− UVWX (3)

where AY*** (-) is the number of vacancies per bubble, =Y,Z[ZV (m2s-1) the pipe diffusion coefficient of

vacancies along dislocations, \ = (3 4`+0⁄)8/H the radius of the Wigner-Seitz cell associated with a
bubble at a dislocation, b (JK-1) the Boltzmann constant, s (-) a geometric factor, and UVW (Pa) the bubble

equilibrium pressure given by the sum of the surface tension and hydrostatic stress. The first term in
brackets represents the bubble internal energy, so that vacancy absorption is activated once the internal
energy exceeds the equilibrium pressure. This condition is naturally met during temperature increases
such as reactor transients to high power. The radius of bubbles at dislocations is calculated as

E0 = S
H

cJ
X
8/H

(dA0**** + ΩAY***)8/H (4)

where d (m3) is the van der Waals volume of a fission gas atom and Ω (m3) is the vacancy volume. The
model also considers bubble coalescence, although details are not given here for brevity.

Fig. 1 shows the early validation results of the extended model to experimental data for the size of
coarsened bubbles along dislocations from SEM observations on various power ramped UO2 fuel samples
in [7]. Results demonstrate that the extended model is able to represent the appearance of bubbles with radii

Fig 1: Comparisons of predicted to measured radii of coarsened intra-granular bubbles for power ramp

experiments from [7]. Calculations were performed with the Bison code.

Dpipe from Murphy et al.,
JNM 466, 2015
Dbulk from Andersson et al.,
JNM 462, 2015

• Multiscale coupling for diffusivities

Experimental validation

Nanometric bubble size and number density in base-irradiated UO2. Model vs. local data in Baker, JNM 66, 1977

Coarsened bubble size and swelling in ramp-tested UO2. Model vs. local data in White et al., R&T/NG/EXT/REP/0206/02, 2006

Interaction with SciDAC institutes

§ FastMath:
– Xolotl solver-related issues and performance

optimization.
– UQ analysis of FECD and initial work on Xolotl.

§ RAPIDS and FastMath:
– Software engineering guidance for Xolotl-MARMOT

coupled code, e.g.:
• Packaging of Xolotl as a library (as opposed to executable) so its

functions can be called by MOOSE framework.
• Integration of two instances of PETSc in same program.

– Performance analysis and optimization of Xolotl.

Summary and conclusions

§ Progress highlighted in all 3 technical thrusts for the project “Simulation of fission
gas in uranium oxide nuclear fuel”.
– DFT and long-time scale atomistic simulations:

• Atomic scale simulations based on DFT, MD and AMD identified mechanisms responsible for
Xe diffusion and predicted response as function of temperature, chemistry and irradiation.

• AMD simulations of uranium interstitial cluster formation and diffusion.
– Spatially discretized cluster dynamics and MARMOT PFM simulations:

• New fission gas resolution model added to Xolotl.
• Performance optimization of both Xolotl and MARMOT to prepare for large-scale 3D coupled

simulations.
• Initial Xolotl-MARMOT coupling accomplished through the MOOSE multi-app system.
• Application to physically accurate 2D problem.
• Performance analysis identified areas for future optimization as we target large-scale 3D

coupled simulations.

– Developed engineering scale framework to be informed by the meso-scale
models in future years and identified experimental validation targets.

– Performed sensitivity analysis of bulk Xe diffusion predicted by the FECD
code using PCE methodology.

