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Contribution: A new Data-Driven framework
We propose a new data-driven framework for analytic continuation problem using deep neural network
architecture. A novel linear multistep network architecture is used for learning the kernel in the inversion
process.

Analytic Continuation
The imaginary time Matsubara Green’s functions
G(τ), which are the fundamental objects that most
QMC method produce as a simulation output,

G(τ) =

∫
KA(ω)dω (1)

K =
e−ωτ

1 + e−ωβ

where K is the Kernel of the analytic continuation,
A(ω) is the spectral function defined on real axis.
Calculations is often tractable in the imaginary time
domain. The challenge is to obtain a spectral func-
tion from imaginary Green’s function. The continu-
ation process is an ill-posed problem, and the direct
inverse A = K−1G is hardly feasible due to the high
condition number.

Mathematicla Formulation

We stack the training features and target row-wise into matrices X0 = [G1, G2, ..., Gs]T ∈ Rs×n and A =
[A1, A2, ..., As] ∈ Rs∈N . The forward propagation of the network can be considered as the forward Euler
discretization of the initial value ODE

Ẋ(t) = σ(X(t),W (t), b(t)), X(0) = X0, 0 ≤ t ≤ T (2)

where time t corresponds to the direction from input to output, X(0) is the initial input feature, and X(T ) is
the output of the network. We use two step Adams-Bashforth (AB) method to discretize the neural network,
the architecture can be found at Fig. This learning process can be solved by the following optimization
problem

minL(Ã,A) + λR(W , b) (3)

The loss function L(Ã,A) = 1/2‖Ã−A‖2F is the sum of squared difference. L2 regularizer R is applied to
prevent overfitting.

Dataset We generate the spectral densities A(ω) using a sum o f R uncorrelated Gaussian distributions:

A(ω) =
1

R

R∑
i=0

exp(− (ω − µi)2

2σ2
i

) (4)

Green’s function can be computed via (1). 100k training dataset (A,G), 1000 samples for validation and
test, respectively.

Maximum Entrophy (MaxEnt)
The least square fitting is applied to M samples of
Gi(τ),

min
1

2
χ2 − αS[A] (5)

χ2 =
M∑
n,m

(Gi(τm)−G(τn))2
√
Cnm (6)

where Cmn being the covariance matrix, S =

−
∫
A(ω) ln[A(ω)

Â(ω)
]dω is the entropy term that regu-

larize the problem. If the input data is uncorrelated
then only the diagonal elements of the covariance ma-
trix are non-zero, in which case χ2 takes the form

χ2 =
M∑
n

(G(τm)−G(τn))2

σ2

Data-Driven Learning
The following is the general learning framework,

Numerical Experiment
Two step ResNet give better results than MaxEnt under high noise level.
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Mulistep Residual Neural Nets
This idea coming from image processing, inverse
problem field,
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