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Application Example: Extracting Earthquakes Signals from Dark Fiber Data § g
Fiber optic cables not being used for data communication (AKA, dark fiber) have been used to collect petabytes of data about ground motion. This data set
requires extensive compute power to extract signals for earthquakes, water levels, and other geophysical phenomena.
The use case below shows how RAPIDS technologies are used to reduce the execution time needed for analyzing a particular data set from weeks to seconds
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Exploring the possibility of using HDF5 in HACC,
Found performance did not scale as well as expected
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1.0 Culprit appeared to be underlying I/O pattern: writing to non- %25
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Hardware and software changes that affect I/O
performance in HPC systems are common but no
effective methods to cope up those changes. Our
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